
NeSy-GeMs workshop at ICLR 2023

LEARNING SYMBOLIC REPRESENTATIONS THROUGH
JOINT GENERATIVE AND DISCRIMINATIVE TRAINING

Emanuele Sansone
Department of Computer Science
KU Leuven
Leuven, 3001, Belgium
emanuele.sansone@kuleuven.be

Robin Manhaeve
Department of Computer Science
KU Leuven
Leuven, 3001, Belgium
robin.manhaeve@kuleuven.be

ABSTRACT

We introduce GEDI, a Bayesian framework that combines existing self-
supervised learning objectives with likelihood-based generative models. This
framework leverages the benefits of both GEnerative and DIscriminative ap-
proaches, resulting in improved symbolic representations over standalone solu-
tions. Additionally, GEDI can be easily integrated and trained jointly with ex-
isting neuro-symbolic frameworks without the need for additional supervision or
costly pre-training steps. We demonstrate through experiments on real-world data,
including SVHN, CIFAR10, and CIFAR100, that GEDI outperforms existing self-
supervised learning strategies in terms of clustering performance by a significant
margin. The symbolic component further allows it to leverage knowledge in the
form of logical constraints to improve performance in the small data regime.

1 INTRODUCTION

Recently, neuro-symbolic learning has received attention as a new approach for integrating
symbolic-based and sub-symbolic methods based on neural networks. This integration provides
new capabilities in terms of perception and reasoning. Currently, neuro-symbolic solutions rely ei-
ther on costly pre-training methods or on additional supervision at the symbolic representation level
provided by the neural network, in order to effectively utilize subsequent learning feedback from the
logical component (Manhaeve et al., 2018). This traditional top-down learning paradigm is subject
to the problem of representational collapse. To gain a clearer understanding of the problem, imagine
we have a tuple of three images, each of which contains a single digit (e.g., < 3, 5, 8 >). Along
with this, we have information about the logical relationships between these digits (e.g., the third
digit is the sum of the first two). Note that this task introduces less supervision compared to the digit
addition experiment typically used in neuro-symbolic systems (i.e. the information about the sum is
not provided). Current neuro-symbolic solutions can easily solve the task by mapping all input data
onto the same symbol 0 and clearly solve the constrained task.

In this study, we present a bottom-up representation learning that can naturally integrate with,
and leverage the information in logical constraints. We demonstrate that several existing self-
supervised learning techniques and likelihood-based generative models can be unified within a co-
herent Bayesian framework called GEDI (Sansone & Manhaeve, 2022). The model leverages the
complementary properties of discriminative approaches, which are suitable for representation learn-
ing, and of generative approaches, which capture information about the underlying density function
generating the data, to learn better symbolic representations and support logical reasoning. Impor-
tantly, GEDI has two main advantages: it can be easily extended to the neuro-symbolic setting to
address the collapse problem and it can also allow for learning symbolic representations in the small
data regime, which is currently out of reach for existing self-supervised learning techniques.

2 GEDI MODEL

Model. Let us introduce the random quantities used in the model shown in Figure 1: (i) x ∈ Ω,
where Ω is a compact subset of Rd, represents a data vector drawn independently from an un-
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known distribution p(x) (for instance an image), (ii) x′ ∈ Ω represents a transformed version of
x using a stochastic data augmentation strategy T (x′|x) (obtained by adding for instance noisy or
cropping the original image) (iii) ξ ∈ Rh is the latent representation of an input data point ob-
tained from an encoder network (the latent representation of the original image) (iv) w ∈ Sh−1,
where Sh−1 is a h − 1 dimensional unit hypersphere, is the embedding vector of an input data
point (obtained from the latent representation using a network called projection head), while (v)
y ∈ {1, . . . , c} is the symbolic representation of an input data point defined over c categories
(namely the cluster label obtained by an output layer defined over the embedding representation).

(a) PGM

(b) Block model

Figure 1: GEDI model. (a) shows
the corresponding probabilistic graphi-
cal model (PGM). (b) shows the differ-
ent modules of GEDI, namely the en-
coder, the projector head and an output
module computing the cosine similarity
between the embedding representation
and the cluster centers.

The corresponding probabilistic graphical model is given
in Figure 1(a). Importantly, the generative process (solid
arrows) is defined using the following conditional den-
sities, namely: p(w|x) = N (w|0, I), viz. a multivari-
ate Gaussian with zero mean and identity covariance,
p(ξ) = N (ξ|0, I), p(x′|x, ξ) = T (x′|x) and p(y|x) =
Softmax(out(proj(enc(x)))), where enc : Ω → Rh

is an encoder used to compute the latent representation,
proj : Rh → Sh−1 is a projector head used to compute
the embedding representation, and out computes the co-
sine similarity between the embedding representation w
and the column vectors of a matrix of parameters U ∈
Rh×c known as the cluster centers/prototypes (Caron
et al., 2020). The inference process (dashed arrows) is
given by the following conditional densities: q(w|x) =
N (w|0,Σ), where Σ =

∑n
i=1(wi − w̄)(wi − w̄)T + βI

is an unnormalized sample covariance matrix computed
over the embedding representations of n data points, β is
a positive scalar used to ensure that Σ is positive-definite,
w̄ = 1/n

∑n
i=1 wi is the mean of the embedding repre-

sentations; q(ξ|enc(x)− enc(x′), I) assesses the level of
invariance between the latent representation of the input data and its augmented version; finally
q(y|x) = SK(out(proj(enc(x′)))) defines a distribution over cluster/prototype assignments lever-
aging the Sinkhorn-Knopp algorithm (SK). Please refer to the work of Caron et al. (2020) for further
details.

Objective. Our training objective is based on an evidence lower bound on the negative entropy,
derived from the probabilistic graphical model of Figure 1(a), namely:

Ep(x){log p(x)} ≥ −CE(p, pΨ)︸ ︷︷ ︸
Generative term

+ LNF (Θ) + LDI(Θ)︸ ︷︷ ︸
Self-supervised learning terms

(1)

where CE(p, pΨ) is the cross-entropy between the unknown distribution p and a generative model
pΨ, equivalently seen as the negative data log-likelihood of the generative model pΨ. We define
pΨ(x) = e−uT enc(x)/Γ(Ψ) as an energy-based model, where Ψ includes both u ∈ Rh and the
encoder parameters. Additionally,

LNF (Θ) = −Ep(x){KL(q(w|x)∥p(w))}︸ ︷︷ ︸
Decorrelation term

−Ep(x)T (x′|x){KL(q(ξ|x, x′)∥p(ξ))}︸ ︷︷ ︸
Invariance term

(2)

where the first and the second addends promote decorrelated features in the embedding representa-
tion and latent representations that are invariant to data augmentations, respectively. Finally,

LDI(Θ) ≥ Ep(x)T (x′|x){Eq(y|x′){log p(y|x; Θ)}+Hq(y|x′)} (3)

where Hq(y|x′) is the entropy computed over q(y|x′) and Θ includes all parameters of the encoder,
projector head and the output layer of our model. Intuitively, the first addend in Eq. 3 forces the
symbolic representations of the input data and its augmented version to be similar, whereas the sec-
ond addend enforces uniformity on the cluster assignments, so as to avoid that all representations
collapse to a single cluster. It is important to mention that the two objectives in Eqs. 2 and 3 are
general enough to cover several proposed criteria in the literature of negative-free and cluster-based
self-supervised learning (cf. Appendix A) (Sansone & Manhaeve, 2022). Interestingly, the objec-
tive in Eq. 1 provides a natural unification between generative and discriminative models based on
self-supervised learning. Learning the GEDI model proceeds using standard gradient descent by
maximizing Eq. 1 (more details about the training procedure are provided in Appendix C).
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Table 1: Clustering performance in terms of normalized mutual information on test set (SVHN,
CIFAR-10, CIFAR-100). Higher values indicate better clustering performance. We observe unstable
training for SwAV on CIFAR-100. We report the best performance achieved out of 10 experiments.

Dataset JEM Barlow SwAV GEDI Gain
SVHN 0.04 0.20 0.24 0.39 +0.15
CIFAR-10 0.04 0.22 0.39 0.41 +0.02
CIFAR-100 0.05 0.46 0.69∗ 0.72 +0.03

3 EXPERIMENTS

We perform experiments to evaluate the discriminative performance of GEDI and its competitors,
namely an energy-based model JEM (Grathwohl et al., 2020), which is trained with persistent con-
trastive divergence (similarly to our approach) and 2 self-supervised baselines, viz. a negative-
free approach based on Barlow Twins (Zbontar et al., 2021) and a discriminative one based on
SwAV (Caron et al., 2020). The whole analysis is divided into two main experimental settings, the
first one based on real-world data, including SVHN, CIFAR-10 and CIFAR-100, and the second one
based on a neural-symbolic learning task in the small data regime constructed from MNIST. We use
existing code both as a basis to build our solution and also to run the experiments for the different
baselines. In particular, we use the code from Duvenaud et al. (2021) for training energy-based mod-
els and the repository from da Costa et al. (2022) for all self-supervised baselines. Implementation
details as well as additional experiments are reported in the Appendices.

3.1 SVHN, CIFAR-10, CIFAR-100

We consider three well-known computer vision benchmarks, namely SVHN, CIFAR-10 and CIFAR-
100. We use a simple 8-layer Resnet network for the backbone encoder for both SVHN and CIFAR-
10 (around 1M parameters) and increase the hidden layer size for CIFAR-100 (around 4.1M param-
eters) following Duvenaud et al. (2021). We use a MLP with a single hidden layer for proj (the
number of hidden neurons is twice the size of the input vector), we choose h = 256 for CIFAR-100
and h = 128 for all other cases. Additionally, we use data augmentation strategies commonly used
in the self-supervised learning literature, including color jitter, and gray scale conversion to name a
few. We train JEM, Barlow, SwAV and GEDI for 100 epochs using Adam optimizer with learning
rate 1e−4 and batch size 64. Further details about the hyperparameters are available in Appendix F.
We evaluate the clustering performance against the ground truth labels by using the Normalized
Mutual Information (NMI) score.

We report all quantitative performance in Table 1. Specifically, we observe that JEM fails to solve the
clustering task for all datasets. This is quite natural, as JEM is a purely generative approach, mainly
designed to perform implicit density estimation. Barlow Twins achieves inferior performance to
SwAV, due to the fact that is not a cluster-based self-supervised learning approach. On the contrary,
we observe that GEDI is able to outperform all other competitors, thanks to the exploitation of the
complementary properties of both generative and self-supervised models. Indeed, the discriminative
component in GEDI leverages the information about the underlying data manifold structure learnt
by the generative part, thus improving the learning of the symbolic representation. In Appendix G
we provide an ablation study to assess the importance of the different loss terms involved in Eq. 1.
Additionally, we conduct experiments on linear probe evaluation, generation and OOD detection
tasks commonly used in the literature of self-supervised learning and energy-based models. Results
are reported in Appendix H.

3.2 NEURAL-SYMBOLIC SETTING

For the final task, we consider applying the proposed method to a neural-symbolic setting. For this,
we borrow an experiment from DeepProbLog Manhaeve et al. (2018). In this task, each example
consists of a three MNIST images such that the value of the last one is the sum of the first two,
e.g. + = . This can thus be considered a minimal neural-symbolic tasks, as it requires
a minimal reasoning task (a single addition) on top of the image classification task. This task only
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contains positive examples and requires a minimal modification to the probabilistic graphical model,
as shown in Figure 2. We use the inference mechanism from DeepProbLog to calculate the proba-
bility that this sum holds, and optimize this probability using the cross-entropy loss function, which
is optimized along with the other loss functions. For this setting, this coincides with the Semantic
Loss function (Xu et al., 2018). To be able to calculate the probability of this addition constraint, we
need the classification probabilities for each digit.

(a) PGM

(b) Block model

Figure 2: Neuro-symbolic task requir-
ing to learn the correct symbolic repre-
sentation of the digits given only a tuple
of images and the corresponding logi-
cal constraint. In this setting, n = 3
data points and q is a Boolean random
variable used to detect if the logical con-
straint is satisfied.

It is a specifically interesting use case for neural-symbolic
learning, since when only the probability is optimized, the
neural network tends to collapse onto the trivial solution
of classifying each digit as a 0 (i.e. y1 = y2 = y3 = 0 in
Figure 2). This is a logically correct but undesirable solu-
tion. Optimizing the discriminative objective should pre-
vent this collapse. We hypothesize that a neural network
can be trained to correctly classify MNIST digits by using
both GEDI and the logical constraint. Since the MNIST
is an easy dataset, we focus on the small data regime, and
see whether the logical constraint is able to provide addi-
tional information. The hyperparameters are identical to
those used in Section 3.1. Further details about the hy-
perparameters are dependent on the data regime, and are
available in Appendix I.

We evaluate the model by measuring the accuracy and
NMI of the ResNet model on the MNIST test dataset for
different numbers of training examples. The results are
shown in Table 2. Here, N indicates the number of addi-
tion examples, which each have 3 MNIST digits. As ex-
pected, the DeepProbLog baseline from Manhaeve et al.
(2018) completely fails to classify MNIST images. It has
learned to map all images to the class 0, as this results
in a very low loss when considering only the logic, re-
sultsing in an accuracy of 0.10 and an NMI of 0.0. The
results also show that, without the NeSy constraint, the
accuracy is low for all settings. The NMI is higher, how-
ever, and increases as there is more data available. This is

expected, since the model is still able to learn how to cluster from the data. However, it is unable
to correctly classify, as there is no signal in the data that is able to assign the correct label to each
cluster. By including the constraint loss, the accuracy improves, as the model now has information
on which cluster belongs to which class. Furthermore, it also has a positive effect on the NMI, as
we have additional information on the clustering which is used by the model. These results show
us that the proposed method is beneficial to learn to correctly recognize MNIST images using only
a weakly-supervised constraint, whereas other NeSy methods fail without additional regularization.
Furthermore, we show that the proposed method can leverage the information offered by the con-
straint to further improve the NMI and classification accuracy.

Table 2: The accuracy and NMI of GEDI on the MNIST test set after training on the addition dataset,
both with and without the NeSy constraint. Additionally, we use DeepProbLog (Manhaeve et al.,
2018) as a baseline without using our GEDI model. We trained each model 5 times and report the
mean and standard deviation.

Without GEDI Without constraint With constraint
N Acc. NMI Acc. NMI Acc. NMI

100 0.10± 0.00 0.00± 0.00 0.08± 0.03 0.28± 0.03 0.25± 0.03 0.41± 0.03
1000 0.10± 0.00 0.00± 0.00 0.09± 0.02 0.47± 0.10 0.52± 0.26 0.86± 0.06

10000 0.10± 0.00 0.00± 0.00 0.17± 0.12 0.68± 0.09 0.98± 0.00 0.97± 0.01
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(a) Contrastive (CT) (b) Discriminative (DI) (c) Negative-Free (NF) (d) GEDI

Figure 3: Probabilistic graphical models for the different classes of self-supervised learning ap-
proaches. White and grey nodes represent hidden and observed vectors/variables, respectively.
Solid arrows define the generative process, whereas dashed arrows identify auxiliary posterior den-
sities/distributions.
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A BAYESIAN INTERPRETATION OF SELF-SUPERVISED LEARNING
OBJECTIVES

We distinguish self-supervised learning approaches according to three different classes: 1) con-
trastive, 2) cluster-based (or discriminative) and, 3) negative-free (or non-contrastive) methods.
Fig. 3 shows the corresponding probabilistic graphical models for each of the self-supervised learn-
ing classes. From Fig. 3, we can also see how the different random quantities, we have introduced in
Section 2, are probabilistically related to each other. Importantly, here we consider to have a set of in-
put samples drawn independently from p and use it i to index different samples, viz. i = {1, . . . , n}
We are now ready to give an interpretation of the different SSL classes.

A.1 CONTRASTIVE SSL

Contrastive self-supervised learning can be interpreted in probabilistic terms using the graphical
model in Fig. 3(a). In particular, we can define the following conditional density:

p(ℓi|xi; Θ) =
esim(g(xℓi

),g(xi))/τ∑n
j=1 e

sim(g(xj),g(xi))/τ
(4)

where sim is a similarity function, τ > 0 is temperature parameter used to calibrate the uncertainty
for p(ℓi|xi; Θ) and Θ = {θ, {xi}ni } is the set of parameters, including the parameters of the em-
bedding function and the observed data. The learning criterion can be obtained from the expected
log-likelihood computed on the observed random quantities (and using the factorization provided by
the graphical model), namely:

Ep(x1:n,ℓ1:n)

{
log p(x1:n, ℓ1:n; Θ)

}
(5)

6



NeSy-GeMs workshop at ICLR 2023

= E∏n
j=1 p(xj)δ(ℓj−j)

{
log

n∏
i=1

p(xi)p(ℓi|xi; Θ)
}

=

n∑
i=1

Ep(xi)

{
log p(xi)

}
+ E∏n

j=1 p(xj)δ(ℓj−j)

{ n∑
i=1

log p(ℓi|xi; Θ)

}

=

n∑
i=1

Ep(xi)

{
log p(xi)

}
︸ ︷︷ ︸

Negative entropy term, −Hp(x1:n)

+E∏n
j=1 p(xj)

{ n∑
i=1

log p(ℓi = i|xi; Θ)

}
︸ ︷︷ ︸

Conditional log-likelihood term LCT (Θ)

(6)

where δ in the second equality is a delta function and we use for instance x1:n as a compact way to
express x1, . . . , xn. From Eq. (6), we observe that the expected log-likelihood can be rewritten as the
sum of two quantities, namely a negative entropy and a conditional log-likelihood terms. However,
only the second addend in Eq. (6) is relevant for maximization purposes over the parameters θ.
Importantly, we can now show that the conditional log-likelikood term in Eq. (6), coupled with the
definition provided in Eq. (4), corresponds to the notorious InfoNCE objective (den Oord et al.,
2018). To see this, let us recall InfoNCE:

InfoNCE ∝ E∏n
j=1 p(xj ,zj)

{ n∑
i=1

log
ef(xi,xi)∑n

k=1 e
f(xk,xi)

}
By choosing p(x, z) = p(x)δ(z − g(x)) and f(x, z) = sim(g(x), z)/τ we recover the conditional
log-likelihood term in Eq. (6). Importantly, other contrastive objectives, such as CPC (O. Henaff,
2020), SimCLR (Chen et al., 2020), ProtoCPC (Lee, 2022), KSCL (Xu et al., 2022) to name a few,
can be obtained once we have a connection to InfoNCE.

A.2 DISCRIMINATIVE/CLUSTER-BASED SSL

Cluster-based SSL can be interpreted in probabilistic terms using the graphical model in Fig. 3(b).
In particular, we can define the following conditional density:

p(yi|xi; Θ) =
eU

T
:yi

G:i/τ∑
y e

UT
:yG:i/τ

(7)

where U ∈ Rh×c is a matrix1 of c cluster centers, G = [g(x1), . . . , g(xn)] is a matrix of embeddings
of size h×n and Θ = {θ, U} is the set of parameters, including the ones for the embedding function
and the cluster centers. The learning criterion can be obtained in a similar way to what we have done
previously for contrastive methods. In particular, we have that

Ep(x1:n){log p(x1:n; Θ)} (8)

= −Hp(x1:n) + Ep(x1:n)T (x′
1:n|x1:n)

{
log

∑
y1:n

p(y1:n|x1:n; Θ)

}

= −Hp(x1:n) + Ep(x1:n)T (x′
1:n|x1:n)

{
log

∑
y1:n

q(y1:n|x′
1:n)

q(y1:n|x′
1:n)

p(y1:n|x1:n; Θ)}

≥ −Hp(x1:n)− Ep(x1:n)T (x′
1:n|x1:n){KL(q(y1:n|x′

1:n)∥p(y1:n|x1:n))}

=

n∑
i=1

Ep(xi)

{
log p(xi)

}
︸ ︷︷ ︸

Negative entropy term, −Hp(x1:n)

+

n∑
i=1

Ep(xi)T (x′
i|xi){Eq(yi|x′

i)
log p(yi|xi; Θ) +Hq(yi|x′

i)}︸ ︷︷ ︸
Discriminative term LDI(Θ)

(9)

1We use subscripts to select rows and columns. For instance, U:y identify y−th column of matrix U .
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where q(yi|x′
i) is an auxiliary distribution. Notably, maximizing the discriminative term is equiva-

lent to minimize the KL divergence between the two predictive distributions p(yi|xi) and q(yi|x′
i),

thus learning to predict similar category for both sample xi and its augmented version x′
i, obtained

through T . Importantly, we can relate the criterion in Eq. (9) to the objective used in optimal trans-
port Cuturi (2013), by substituting Eq. (7) into Eq. (9) and adopting a matrix format, namely:

LDI(Θ; T ) = 1

τ

{
Ep(x1:n)T (x′

i|xi){Tr(QUTG)}+ τEp(x1:n)T (x′
i|xi){HQ(y1:n|x′

1:n)}
}

(10)

where Q = [q(y1|x′
1), . . . , q(yn|x′

n)]
T is a prediction matrix of size n × c and Tr(A) is the trace

of an arbitrary matrix A. Note that a naive maximization of LDI(Θ) can lead to obtain trivial
solutions like the one corresponding to uniformative predictions, namely q(yi|x′

i) = pγ(yi|xi) =
Uniform({1, . . . , c}) for all i = 1, . . . , n. Fortunately, the problem can be avoided and solved
exactly using the Sinkhorn-Knopp algorithm, which alternates between maximizing LDI(Θ) in
Eq. (10) with respect to Q and with respect to Θ, respectively. This is indeed the procedure used in
several cluster-based SSL approaches, like DeepCluster Caron et al. (2018) and SwAV Caron et al.
(2020), to name a few.

A.3 NON-CONTRASTIVE/NEGATIVE-FREE SSL

We can provide a probabilistic interpretation also for negative-free SSL using the graphical model
shown in Fig. 3(c). Note that, for the sake of simplicity in the graph and in the following derivation,
the latent variables (w and all ξi) are considered independent of each other only for the generation
process. In reality, one should consider an alternative but equivalent model, using a generating
process including also the edges xi → w, ξi → x′

i and defining p(w|xi) = p(w) and p(x′
i|xi, ξi) =

T (x′
i|xi) for all i = 1 . . . , n. Based on these considerations, we can define the prior and our

auxiliary and inference densities for the model in the following way:

p(w) = N (w|0, I)
p(ξi) = N (ξi|0, I)

q(w|x1:n; Θ) = N (w|0,Σ)
q(ξi|xi, x

′
i; Θ) = N (ξi|enc(xi)− enc(x′

i), I) (11)

where N (·|µ,Σ) refers to a multivariate Gaussian density with mean µ and covariance Σ, I is an
identity matrix, Σ =

∑n
i=1(g(xi) − ḡ)(g(xi) − ḡ)T + βI , β is positive scalar used to ensure the

positive-definiteness of Σ, ḡ = 1/n
∑n

i=1 g(xi) and Θ = {θ}. Importantly, while q(w|x1:n) in
Eq. (11) is used to store the global statistical information of the data in the form of an unnormal-
ized sample covariance, q(ξi|xi, x

′
i) is used to quantify the difference between a sample and its

augmented version in terms of their latent representation. Similarly to previous SSL classes and by
reusing definitions in Eq. (11), we can devise the learning criterion in the following way:

Ep(x1:n){log p(x1:n; Θ)} ≥ −Hp(x1:n)− Ep(x1:n){KL(q(w|x1:n; Θ)∥p(w))}
− Ep(x1:n)T (x′

1:n|x1:n){KL(q(ξ1:n|x1:n, x
′
1:n; Θ)∥p(ξ1:n))}

= −Hp(x1:n)− Ep(x1:n){KL(q(w|x1:n; Θ)∥p(w))}

−
n∑

i=1

Ep(xi)T (x′
i|xi){KL(q(ξi|xi, x

′
i; Θ)∥p(ξi))}

∝
n∑

i=1

Ep(xi)

{
log p(xi)

}
︸ ︷︷ ︸

Negative entropy term, −Hp(x1:n)

−Ep(x1:n)

{
Tr(Σ)

2
− log |Σ|

2

}
︸ ︷︷ ︸

Negative-free term, LNF (Θ) (first part)

−
n∑

i=1

Ep(xi)T (x′
i|xi)

{
dist(xi, x

′
i)

2

}
︸ ︷︷ ︸

Negative-free term, LNF (Θ) (second part)

(12)

where dist(x, x′) = ∥enc(x)− enc(x′)∥2 and |A| computes the determinant of an arbitrary matrix
A. Notably, the maximization of LNF (Θ) promotes both decorrelated embedding features, as the
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first two addends in LNF (Θ) (obtained from the first KL term in Eq. (12)) force Σ to become an
identity matrix, as well as representations that are invariant to data augmentations, thanks to the
third addend in LNF (Θ). It is important to mention that LNF (Θ) in Eq. (12) recovers two recent
negative-free criteria, namely CorInfoMax (Ozsoy et al., 2022) and MEC (Liu et al., 2022). We can
also relate LNF (Θ) to other existing negative-free approaches, including Barlow Twins (Zbontar
et al., 2021), VicReg (Bardes et al., 2022a;b) and W-MSE (Ermolov et al., 2021).

B UNIFYING GENERATIVE AND SSL MODELS: A GENERAL RECIPE (GEDI)

In all three classes of SSL approaches (see Eqs. (6),(9) and (12)), the expected data log-likelihood
can be lower bounded by the sum of two contribution terms, namely a negative entropy −Hp(x1:n)
and a conditional log-likelihood term, chosen from LCT (Θ),LDI(Θ) and LNF (Θ). A connection
to generative models emerges by additionally lower bounding the negative entropy term, namely:

−Hp(x1:n) = Ep(x1:n){log p(x1:n)}

=

n∑
i=1

Ep(xi){log p(xi)}

=

n∑
i=1

[
Ep(xi){log pΨ(xi)}+KL(p(xi)∥pΨ(xi))

]
≥

n∑
i=1

Ep(xi){log pΨ(xi)}︸ ︷︷ ︸
−CE(p, pΨ)

(13)

where pΨ(x) is a generative model parameterized by Ψ. Notably, the relation in (13) can be sub-
stituted in any of the objectives previously derived for the different SSL classes, thus allowing to
jointly learn both generative and SSL models. This leads to a new GEnerative and DIscriminative
family of models, which we call GEDI. Importantly, any kind of likelihood-based generative model
(for instance variational autoencoders, normalizing flows, autoregressive or energy-based models)
can be considered in GEDI. In this work, we argue that much can be gained by leveraging the GEDI
integration. Notably, there has been a recent work EBCLR (Kim & Ye, 2022) integrating energy-
based models with contrastive SSL approaches. Here, we show that EBCLR represents one possible
instantiation of GEDI. For instance, let us consider contrastive SSL and observe that the conditional
density in Eq. (4) can be decomposed into a joint and a marginal densities (similarly to what is done
in (Grathwohl et al., 2020)):

p(ℓ, x; Θ) =
esim(g(xℓ),g(x))/τ

Γ(Θ)

p(x; Θ) =

∑n
j=1 e

sim(g(xℓj
),g(x))/τ

Γ(Θ)

=
e

−

− log

n∑
j=1

esim(g(xℓj
),g(x))/τ


︸ ︷︷ ︸

E(x; Θ)

Γ(Θ)
(14)

where E(x,Θ) defines the energy score of the marginal density. Now, by choosing pΨ(x) = p(x; Θ)
and sim(z, z′) = −∥z − z′∥2 in Eq. (14), one recovers the exact formulation of EBCLR (Kim &
Ye, 2022).

C WHOLE MODEL AND TRAINING ALGORITHM

Figure 4 shows the whole GEDI architecture and how to compute the different losses. Importantly,
GEDI training relies on a newly introduced data augmentation strategy, called DAM.

9
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Figure 4: Diagram of the whole model. Grey boxes are shared among different rows.

Algorithm 1: Data Augmentation based on Manifold structure (DAM). Formulation based on a
batch of samples of size n.
Input: x1:n, pΨ, ϵ, T ;
Output: x′

1:n;
Sample ∆0 uniformly at random from Bϵ;
For t = 0, . . . , T ;

Evaluate ∇xpΨ(x
t
i +∆t) for all i = 1, . . . , n;

Update xt
i using Eq. (15) for all i = 1, . . . , n;

∆t ← ∆0;
x′
i ← xT

i for all i = 1, . . . , n;
Return x′

1:n;

Data Augmentation based on Manifold structure (DAM). The routine uses generated samples
obtained by ”walking” on the approximated data manifold induced by the energy-based model
and it assigns the same label of the original points to these samples through the discriminative
loss LDI(Θ), thus enforcing the manifold assumption, commonly used in semi-supervised learn-
ing (O.Chapelle et al., 2010). DAM consists of an iterative procedure starting from an original
training data point x, drawn from p, and generating new samples x′ along the approximated data
manifold induced by pΨ. At each iteration t, the algorithm performs two main operations: Firstly, it
locally perturbs a sample xt by randomly choosing a vector ∆t on a ball of arbitrarily small radius
ϵ > 0, viz. Bϵ, and secondly, it projects the perturbed sample xt +∆t back onto the tangent plane
of the approximated data manifoldMpΨ using the following update rule:

xt ← xt +∆t −
(
∇xpΨ(x

t +∆t)T∆t

∥∇xpΨ(xt +∆t)∥2

)
∇xpΨ(x

t +∆t)︸ ︷︷ ︸
∆t

∥

(15)

Figure 5: Data augmentation strategy exploiting
the information about the manifold structureMpΨ

and the vector field ∇xpΨ induced by the energy-
based model pΨ. A local perturbation ∆t of a
point xt is projected back onto the tangent plane
of the manifold by using the gradient information.
The strategy is applied iteratively starting from
x ≡ x0 up to x′ ≡ xT .

A visual interpretation as well as a complete
description of the strategy are provided in Fig-
ure 5 and Algorithm 1, respectively.

Learning a GEDI model. The data augmenta-
tion strategy proves effective when the energy-
based model approximates well the unknown
data density p(x). Consequently, we opt to train
our GEDI model using a two-step procedure,
where we first train the energy-based model to
perform implicit density estimation and subse-
quently train the whole model by maximizing
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Algorithm 2: GEDI Training. Formulation based on a batch of samples of size n.
Input: x1:n, Iters1, Iters2, T , ϵ, SGLD and Adam optimizer hyperparameters;
Output: Trained model g;
# Step 1;
For iter = 1, . . . , Iters1;

Generate samples from pΨ using SGLD;
Ψ← Adam maximizing −CE(p, pΨ);

# Step 2;
For iter = 1, . . . , Iters2;

x′
1:n ← DAM(x1:n, pΨ, ϵ, T );

Generate samples from pΨ using SGLD;
Ψ,Θ← Adam maximizing Eq. (1);

Return g;

Table 3: Clustering performance in terms of normalized mutual information (NMI) on test set
(moons and circles). Higher values indicate better clustering performance. Mean and standard
deviations are computed from 5 different runs. GEDI uses T = 10 moves in DAM.

Dataset JEM SwAV GEDI Gain
Moons 0.0±0.0 0.8±0.1 0.98±0.02 +0.18
Circles 0.0±0.0 0.0±0.0 1.00±0.01 +1.00

the objective in Eq. (1). Regarding the first
stage, we maximize only the generative term in
Eq. (1) whose gradient is given by the following
relation:

−∇ΨCE(p, pΨ) = Ep(x)

{
∇Ψ log eu

T enc(x)
}

−∇Ψ log Γ(Ψ)

= Ep(x){∇Ψ log eu
T enc(x)}

EpΨ(x)

{
∇Ψ log eu

T enc(x)
}

(16)

where the first and the second expectations in Eq. (16) are estimated using the training and the
generated data, respectively. To generate data from pΨ, we use a sampler based on Stochastic
Gradient Langevin Dynamics (SGLD), thus following recent best practices to train energy-based
models (Xie et al., 2016; Nijkamp et al., 2019; Du & Mordatch, 2019; Nijkamp et al., 2020).

Regarding the second stage, we maximize the whole objective in Eq. (1). Specifically, at each
training iteration, we run the DAM routine to obtain the augmented sample x′. We also use the
augmented samples from the stochastic data augmentation strategy T . Both augmentations are used
to compute LDI(Θ) through the differentiable clustering prodecure of SwAV (Caron et al., 2020).
The learning process is summarized in Algorithm 2.

Computational requirements. Compared to traditional SSL training, and more specifically to
SwAV, our learning algorithm requires additional operations and therefore increased computational
requirements (but constant given T and Iters1). Indeed, (i) we need an additional training step (Step
1) to pre-train a generative model to approximate the unknown data density and to ensure the proper
working of DAM in the second step, (ii) we need to generate samples from pΨ to continue learning
the generative model in Step 2 and (ii) we also need to run T additional forward and backward passes
through the energy-based model to run the DAM strategy at each iteration of the GEDI training.

11
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D MOTIVATING TOY EXAMPLES FOR DAM

We consider two well-known synthetic datasets, namely moons and circles. We use a multi-layer
perceptron (MLP) with two hidden layers (100 neurons each) for enc and one with a single hidden
layer (4 neurons) for proj, we choose h = 2 and we choose T (x′|x) = N(0, σ2I) with σ =
0.03 as our data augmentation strategy. We train JEM, SwAV and GEDI for 7k iterations using
Adam optimizer with learning rate 1e − 3. Further details about the hyperparameters are available
in the Appendix E. We evaluate the clustering performance both qualitatively, by visualizing the
cluster assignments using different colors, as well as quantitatively, by using the Normalized Mutual
Information (NMI) score. Furthermore, we conduct an ablation study for the different components
of GEDI.

We report all quantitative performance in Table 3. Specifically, we observe that JEM fails to solve
the clustering task for both datasets. This is quite natural, as JEM is a purely generative approach,
mainly designed to perform implicit density estimation. SwAV can only solve the clustering task
for the moons dataset, highlighting the fact that it is not able to exploit the information from the
underlying density used to generate the data. However, GEDI can recover the true clusters in both
datasets. This is due to the fact that GEDI uses the information from the generative component
through DAM to inform the cluster-based one. Consequently, GEDI is able to exploit the manifold
structure underlying data. Figure 6 provide some examples of predictions by SwAV and GEDI on
the two datasets. From the figure, we can clearly see that GEDI can recover the two data manifolds
up to a permutation of the labels.

We conduct an ablation study to understand the impact of the different components of GEDI. We
compare four different versions of GEDI, namely the full version (called simply GEDI), GEDI
trained without LNF (Θ) (called no NF), GEDI trained without the first stage and also without
LNF (Θ) (called no NF, no train. 1) and GEDI trained withoutLNF (Θ) using two different encoders
for computing the discriminative and the generative terms in our objective (called no NF, 2 enc.).
From the results in Figure 8, we can make the following observations: (i) DAM plays a crucial role
to recover the manifold structure, as the performance increase with the number of steps T for GEDI,
no NF and no NF, 2 enc.. However, the strategy is not effective when we don’t use the first training
stage, as demonstrated by the results obtained by no NF, no train. 1 on circles. This confirms our
original hypothesis that DAM requires a good generative model; (ii) When looking at the results
obtained by no NF and no NF, 2 enc., we observe that there is a clear advantage, especially on
circles, by using a single encoder, highlighting the fact that the integration between generative and
self-supervised models is effective not only at the objective level but also at the architectural one;
(iii) From the comparison between GEDI and no NF on circles, we observe improved performance
and reduced variance. This suggests that LNF (Θ) complements the other terms in our objective and
therefore contributes to driving the learning towards desired solutions.

E HYPERPARAMETERS FOR SYNTHETIC DATA

For the backbone enc, we use a MLP with two hidden layers and 100 neurons per layer, an output
layer with 2 neurons and LeakyReLU activation functions. For the projection head proj, we use a
MLP with one hidden layer and 4 and an output layer with 2 neurons (batch normalization is used
in all layers) and final L2 normalization. For JEM, we use an output layer with only one neuron. All
methods use a batch size of 400. Baseline JEM (following the original paper):

• Number of iterations 100K
• Learning rate 1e− 3

• Optimizer Adam β1 = 0, β2 = 0.9

• SGLD steps 1
• Buffer size 10000
• Reinitialization frequency 0.05

• SGLD step-size 1

• SGLD noise 0.01

And for self-supervised learning methods, please refer to Table 5.
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(a) Ground truth (b) SwAV (c) GEDI

(d) Ground truth (e) SwAV (f) GEDI

Figure 6: Qualitative visualization of the clustering performance for the different strategies (only
SwAV and GEDI are shown) on moons (a-c) and on circles (d-f) datasets. Colors identify different
cluster predictions.

(a) Moons (b) Circles

Figure 7: NMI achieved by JEM, SwAV and GEDI on moons and circles dataset. The curves are
obtained by choosing different values of T for DAM, namely T ∈ {1, 2, 5, 8, 10}.

(a) Moons (b) Circles

Figure 8: Ablation study for GEDI on moons and circles dataset. The curves are obtained by
choosing different values of T for DAM, namely T ∈ {1, 2, 5, 8, 10}.
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F HYPERPARAMETERS FOR SVHN, CIFAR-10, CIFAR-100

Table 4: Resnet architecture. Conv2D(A,B,C) applies a 2d convolution to input with B channels and
produces an output with C channels using stride (1, 1), padding (1, 1) and kernel size (A, A).

Name Layer Res. Layer

Block 1

Conv2D(3,3,F) AvgPool2D(2)LeakyRELU(0.2)
Conv2D(3,F,F) Conv2D(1,3,F) no paddingAvgPool2D(2)

Sum

Block 2

LeakyRELU(0.2)
Conv2D(3,F,F)

LeakyRELU(0.2)
Conv2D(3,F,F)
AvgPool2D(2)

Block 3

LeakyRELU(0.2)
Conv2D(3,F,F)

LeakyRELU(0.2)
Conv2D(3,F,F)

Block 4

LeakyRELU(0.2)
Conv2D(3,F,F)

LeakyRELU(0.2)
Conv2D(3,F,F)

AvgPool2D(all)

For the backbone enc, we use a ResNet with 8 layers as in Duvenaud et al. (2021), where its archi-
tecture is shown in Table 4. For the projection head proj, we use a MLP with one hidden layer and
2 ∗ F neurons and an output layer with F neurons (batch normalization is used in all layers) and
final L2 normalization. F = 128 for SVHN, CIFAR-10 (1 million parameters) and F = 256 for
CIFAR-100 (4.1 million parameters). For JEM, we use the same settings of Duvenaud et al. (2021).
All methods use a batch size of 64. Baseline JEM (following the original paper):

• Number of epochs 100

• Learning rate 1e− 4

• Optimizer Adam

• SGLD steps 20

• Buffer size 10000

• Reinitialization frequency 0.05

• SGLD step-size 1

• SGLD noise 0.01

• Data augmentation (Gaussian noise) 0.03

And for self-supervised learning methods, please refer to Table 5.

G ABLATION STUDY ON SVHN, CIFAR-10, CIFAR-100

We conduct an ablation study to understand the impact of the different components of GEDI. We
compare four different versions of GEDI, namely the full version (called simply GEDI), GEDI
trained without LNF (Θ) (called no NF), GEDI trained without the first stage and also without
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Table 5: Hyperparameters (in terms of sampling, optimizer, objective and data augmentation) used
in all experiments.

Class Name param. SVHN CIFAR-10 CIFAR-100 Addition

Data augment.

Color jitter prob. 0.1 0.1 0.1 0.1
Gray scale prob. 0.1 0.1 0.1 0.1
Random crop Yes Yes Yes Yes
Additive Gauss. noise (std) 0.03 0.03 0.03 0.3
Random horizontal flip No Yes Yes No

Training 1

SGLD

SGLD iters 20 20 20 10
Buffer size 10k 10k 10k 10k
Reinit. frequency 0.05 0.05 0.05 0.05
SGLD step-size 1 1 1 1
SGLD noise 0.01 0.01 0.01 0.01

Optimizer

Batch size 64 64 64 60
Iters1 100k 70k 70k Sec. I
Adam β1 0.9 0.9 0.9 0.9
Adam β2 0.999 0.999 0.999 0.999
Learning rate 1e− 4 1e− 4 1e− 4 1e− 4

Training 2

SGLD

SGLD iters idem idem idem idem
Buffer size idem idem idem idem
Reinit. frequency idem idem idem idem
SGLD step-size idem idem idem idem
SGLD noise idem idem idem idem

Optimizer

Batch size idem idem idem idem
Iters2 idem idem idem idem
Adam β1 idem idem idem idem
Adam β2 idem idem idem idem
Learning rate idem idem idem idem

DAM ϵ 0.03 0.03 0.03 0.03
T 10 10 10 10

Weights for losses

−CE(p, pΨ) 1 1 1 1
LNF (Θ) 1/batch 1/batch 1/batch 1/batch
LDI(Θ, T ) 1000 1000 1000 1000
LDI(Θ, pΨ) 500 500 500 500
LNeSY (Θ) - - - 0/3000

Table 6: Ablation study for clustering performance in terms of normalized mutual information on
test set (SVHN, CIFAR-10, CIFAR-100). Higher values indicate better clustering performance.

Dataset no NF, 2 enc. (Ours) no NF (Ours) GEDI (Ourss) Gain
SVHN 0.21 0.31 0.39 +0.08
CIFAR-10 0.38 0.40 0.41 +0.00
CIFAR-100 0.75 0.76 0.72s -0.04

LNF (Θ) (called no NF, no train. 1) and GEDI trained withoutLNF (Θ) using two different encoders
for computing the discriminative and the generative terms in our objective (called no NF, 2 enc.).
Results are shown in Table 6.
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Table 7: Supervised linear evaluation in terms of accuracy on test set (SVHN, CIFAR-10, CIFAR-
100). The linear classifier is trained for 100 epochs using SGD with momentum, learning rate 1e−3
and batch size 100.

Dataset JEM Barlow SwAV No NF, 2 enc. No NF GEDI
SVHN 0.20 0.84 0.44 0.29 0.52 0.56
CIFAR-10 0.23 0.63 0.53 0.48 0.50 0.51
CIFAR-100 0.03 0.35 0.14 0.12 0.15 0.15

Table 8: Generative performance in terms of Frechet Inception Distance (FID) (SVHN, CIFAR-10,
CIFAR-100). The lower the values the better the performance are.

Dataset JEM Barlow SwAV No NF, 2 enc. No NF GEDI
SVHN 166 454 489 158 173 208
CIFAR-10 250 413 430 209 265 236
CIFAR-100 240 374 399 210 237 244

Table 9: OOD detection in terms of AUROC on test set (CIFAR-10, CIFAR-100). Training is
performed on SVHN.

Dataset JEM Barlow SwAV No NF, 2 enc. No NF GEDI
CIFAR-10 0.75 0.43 0.21 0.76 0.97 0.94
CIFAR-100 0.75 0.5 0.28 0.75 0.94 0.93

Table 10: OOD detection in terms of AUROC on test set (SVHN, CIFAR-100). Training is per-
formed on CIFAR-10.

Dataset JEM Barlow SwAV No NF, 2 enc. No NF GEDI
SVHN 0.43 0.31 0.24 0.43 0.31 0.31
CIFAR-100 0.54 0.56 0.51 0.53 0.53 0.55

Table 11: OOD detection in terms of AUROC on test set (SVHN, CIFAR-10). Training is performed
on CIFAR-100.

Dataset JEM Barlow SwAV No NF, 2 enc. No NF GEDI
SVHN 0.48 0.43 0.50 0.47 0.32 0.38
CIFAR-10 0.48 0.42 0.46 0.47 0.49 0.50
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H ADDITIONAL EXPERIMENTS ON SVHN, CIFAR-10, CIFAR-100

We conduct a linear probe evaluation of the representations learnt by the different models Table 7.
These experiments provide insights on the capabilities of learning representations producing linearly
separable classes. From Table 7, we observe a large difference in results between Barlow and SwAV.
Our approach provides interpolating results between the two approaches.

We also evaluate the generative performance in terms of Frechet Inception Distance (FID). From
Table 8, we observe that GEDI outperforms all self-supervised baselines by a large margin, achieving
comparable performance to JEM.

Additionally, we evaluate the performance in terms of OOD detection, by following the same
methodology used in Grathwohl et al. (2020). We use the OOD score criterion proposed in Grath-
wohl et al. (2020), namely s(x) = −∥∂ log pΨ(x)

∂x ∥2. From Table 9, we observe that GEDI achieves
almost optimal performance. While these results are exciting, it is important to mention that they
are not generally valid. Indeed, when training on CIFAR-10 and performing OOD evaluation on
the other datasets, we observe that all approaches achieve similar performance both on CIFAR-100
and SVHN, suggesting that all datasets are considered in-distribution, see Table 10. A similar ob-
servation is obtained when training on CIFAR-100 and evaluating on CIFAR-10 and SVHN, see
Table 11. Importantly, this is a phenomenon which has been only recently observed by the scientific
community on generative models. Tackling this problem is currently out of the scope of this work.
For further discussion about the issue, we point the reader to the works in Nalisnick et al. (2019).

I DETAILS ON THE MNIST ADDITION EXPERIMENT.

We now discuss the details on the MNIST addition experiment.

I.1 HYPERPARAMETERS

For the backbone enc, we use a ResNet with 8 layers as in Duvenaud et al. (2021), where its archi-
tecture is shown in Table 4. For the projection head proj, we use a MLP with one hidden layer and
256 neurons and an output layer with 128 neurons (batch normalization is used in all layers) and
final L2 normalization. The number of epochs for both training phases for the three settings, i.e. 100
examples, 1000 examples and 10000 examples are 100, 30 and 5 epochs respectively. These were
selected by the point at which the loss curves flatten out.

I.2 DATA GENERATION

The data was generated by uniformly sampling pairs a, b such that 0 ≤ a ≤ 9, 0 ≤ b ≤ 9 and
0 ≤ a + b ≤ 9. For each triplet (a, b, c), we assigned to a, b, c, random MNIST images with
corresponding labels, without replacement.

I.3 CALCULATING THE CONSTRAINT

To calculate the constraint, we group the three images of each triplet consecutively in the batches,
hence why the batch size is a multiple of 3. To calculate the probability of the constraint, we
used an arithmetic circuit compiled from the DeepProbLog program that implements this constraint
Manhaeve et al. (2018).
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