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ABSTRACT

Human language richly invokes our intuitive physical knowledge. We talk about
physical objects, scenes, properties, and events; and we can make predictions and
draw inferences about physical worlds described entirely in language. Under-
standing this everyday language requires inherently probabilistic reasoning—over
possible physical worlds invoked in language and over uncertainty inherent to
those physical worlds. In this paper, we propose PiLoT, a neurosymbolic gen-
erative model that translates language into probabilistic programs grounded in a
physics engine. Our model integrates a large language model (LLM) to robustly
parse language into program expressions and uses a probabilistic physics engine
to support inferences over scenes described in language. We construct a linguistic
reasoning benchmark based on prior psychophysics experiments that requires
reasoning about physical outcomes based on linguistic scene descriptions. We
show that PiLoT well predicts human judgments and outperforms LLM baselines.

1 INTRODUCTION

Physical intuitions pervade everyday language. We can describe and imagine a tall stack of plates, a
heavy box, and objects that move, bounce, or collide. We flexibly make predictions (what happens if
one pushes that table stacked with plates?) and infer underlying properties of the world (how heavy
is that box that no one can lift?). Understanding this language requires integrating uncertainty in
language (e.g., possible heights picked out by tall) with uncertainty about the world itself.

How do we relate the meanings of language to what we know about the physical world? A productive
line of computational cognitive models, which is based on extensive developmental evidence, has
modeled human physical understanding as probabilistic inference over a mental physics engine,
using representations like those for simulations in video games (Battaglia et al., 2013; Ullman et al.,
2017). But how are these capabilities integrated with language, allowing us to imagine and draw
inferences over possible physical worlds, described in words? Recent AI advances suggest one route
for modeling human language understanding, using large language models (LLMs) (Brown et al.,
2020; Chowdhery et al., 2022). Close analysis, however, suggests that these models often fall short
in capturing how humans reason about language when it requires reasoning about a structured world
state (e.g., Collins et al., 2022). Increasingly, a parallel line of work suggests instead augmenting
these models with external world knowledge and computational capabilities, such as calculators
(Cobbe et al., 2021), knowledge bases (Karpas et al., 2022), and even physics simulations applied
towards deterministic, textbook-style questions (Liu et al., 2022).

Here, we consider the computational challenge of understanding language that captures our intuitive,
probabilistic understanding of the physical world. We seek a modular account that explains how lan-
guage is integrated with, but distinct from, our general physical reasoning abilities. This work makes
three main contributions towards these ends (Fig. 1). First, we propose a linguistic physical rea-
soning benchmark inspired by an existing battery of visual psychophysics tasks (Battaglia et al.,
2013), designed to measure commonsense inferences about physical scenes described in everyday
language. Next, we propose PiLoT (Physics in a Language of Thought), a computational model
that translates language into probabilistic programs grounded in a physics engine, as a frame-
work for modeling human-like physical reasoning over language. This model builds on a classical
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Human intuitive physics language benchmark

         
    

There is one tall stack of yellow blocks on the left 
edge of the table, and there are no red blocks on 
the right edge.

Physics in a Language of Thought (PiLoT)

There is one tall stack of yellow blocks on the left 
edge of the table.

Translate: Semantics into probabilistic 
program conditions using a large language 
model (LLM) trained on code

Simulate: Sample possible worlds from conditioned probabilistic program with physics 
simulation engine

Question: If the table is bumped hard 
enough to knock at least one of the 
blocks onto the floor, are there going to 
be more red blocks or yellow blocks
on the floor? 

Distribution over model answers
reflects probabilistic physical reasoning 
over possible scenes

...

Collect human 
answers

Distribution over human answers

World 1

Answer: 6 – Very likely 
more yellow blocks

...

Are there going to be more
red blocks or yellow blocks 
on the floor? 

Answer: 7 – Definitely 
more yellow blocks

World 2

World 3

Answer: 6 – Very likely 
more yellow blocks

condition(
filter(isOnEdge, 
filter(isOnRight, 
filter(isRed, world.stacks)

)).length == 0)

There are no red blocks on the right edge.

condition(
filter(isOnEdge, 
filter(isOnLeft, 
filter(isTall, 
filter(isYellow, world.stacks)

))).length == 1)

Answer: 6 – Very likely 
more yellow blocks

Answer: 7 – Definitely 
more yellow blocks more red more yellow

        
        

Scenario: Imagine there is a table with some 
blocks on it; blocks can be red or yellow.

Figure 1: Human language understanding draws on our flexible, intuitive physical knowledge. (Top) We col-
lect human judgments about physical outcomes based on descriptions of a tabletop scene with varying config-
urations of red and yellow blocks.(Bottom) Our model, PiLoT, reasons about these descriptions by translating
language into probabilistic program expressions that condition a generative model over possible scenes using
a code LLM. To answer questions about physical outcomes, PiLoT samples and simulates scenes from the
conditioned model using a physics engine, producing inferences that correlate well with human judgments.

theoretical tradition that suggests we construct linguistic meaning from cognitive representations
in a compositional language of thought (Fodor, 1975; Jackendoff, 1985; Lakoff, 1988), and more
recent proposals that address uncertainty in meaning using probabilistic semantic representations
(van Eijck & Lappin, 2012; Cooper et al., 2015; Goodman & Lassiter, 2015). One outstanding chal-
lenge for scaling these approaches, however, has been implementing broad-coverage functions that
can map generally between human language and an underlying semantics. Moreover, prior work
has left largely open how the semantics of language can interface formally with physical knowl-
edge. In this paper, we propose a computational framework that addresses the first challenge using
large language-code models to translate between sentences in language and symbolic semantic ex-
pressions, and show that this approach can generalize across a broad range of sentences. Then, by
modeling these semantics as probabilistic programs grounded in a physics engine, our model can
flexibly construct general, structured meanings that also support simulation and physical inferences
over language. When applied to our linguistic benchmark, we show that PiLoT robustly predicts
human reasoning about linguistic physical scenes. Our model better correlates with human judg-
ments and outperforms the directly-queried LLM baseline across the benchmark as a whole. We also
find that our model best predicts the underlying distribution of human judgments, capturing the
uncertainty inherent to how we reason about abstract, linguistic descriptions about these scenes.

2 LINGUISTIC PHYSICAL REASONING BENCHMARK

We propose a linguistic and physical reasoning task inspired by psychophysics stimuli from
Battaglia et al. (2013), in which subjects were presented with visual scenes involving different con-
figurations of red and yellow blocks stacked on a table and asked to predict physical outcomes. Our
linguistic benchmark adapts this domain to scenes described in language. Unlike visual images, this
task requires reasoning over the additional uncertainty inherent to language.

Each stimuli in our benchmark begins with a linguistic description of the general domain of scenes
(Imagine a table with some red or yellow blocks on it) and then provides varying additional infor-
mation about the block configuration (There are at least two tall stacks of yellow blocks on the right
edge of the table). Based on each scene description, we pose a simple linguistic query that requires
reasoning about possible physical outcomes: If the table is bumped hard enough to knock at least
one of the blocks onto the floor, are there going to be more red blocks or yellow blocks on the floor?

Using this base template, we design 64 scene reasoning stimuli that vary systematically over a space
of linguistic concepts and in the complexity of each scene description. Scene descriptions were
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parameterized based on the following conceptual categories, each widely studied in both cognitive
science and natural language semantics:

• Number: how many blocks or stacks are on a table, such as three stacks of red blocks or
two yellow blocks (Bartsch, 1973; Gelman & Gallistel, 1986; Carey, 2009).

• Spatial relations: prepositions describing where blocks are located, such as the center, left
and right sides, and left and right edges of the table, or near another block on the table
(Landau & Jackendoff, 1993).

• Quantifiers: quantifiers such as many, few, several, most, or half of the blocks being of a
certain color, position, etc., and negations such as none of the blocks being a certain color,
etc. (Montague, 1973; Barwise & Cooper, 1981; van Tiel et al., 2021).

• Gradable adjectives: adjectives describing the stacks as tall, very tall, or short (Klein,
1980; Williamson, 2002; Lassiter & Goodman, 2017).

Using these base concepts, we vary stimuli complexity based on how many distinct classes of con-
cepts are invoked in a given scene description. Our benchmark comprises 16 easy stimuli, which
contain concepts from a single conceptual category; 24 moderate stimuli, containing concepts from
two categories; and 24 challenging stimuli, which contain concepts from 3-4 categories.

Human linguistic reasoning experiment: We evaluate human judgments on these linguistic scene
reasoning tasks. Subjects produced judgments about each stimulus on a 1–7 Likert scale of confi-
dence spanning 1 (definitely more red blocks) to 7 (definitely more yellow blocks), measuring subject
uncertainty about an inherently probabilistic task. In total, we recruited 160 human participants from
the Prolific platform and collected approximately 40 human responses per stimulus.

3 OUR MODEL: PILOT
In this work, we set out to architect a cognitive model of physical reasoning inspired by theories
of mental simulation and the principle of modularity. The resulting model, which we call PiLoT,
consists of three modules: A probabilistic generative model over possible scenes, a physics simula-
tor, and a language-to-code translation model. Together, the generative model and physics simulator
implement a version of the model used in Battaglia et al. (2013). Meanwhile, the translation model
extends their framework to integrate natural language, in the spirit of Goodman & Lassiter (2015).1

Probabilistic generative model: We begin by defining a base generative model over possible
worlds. We write this model in WebPPL, a JavaScript-based probabilistic programming language
(PPL) (Goodman & Stuhlmüller, 2014). Each sample from the model is a stochastically generated
initial configuration of blocks. More details about the model can be found in Appendix B.

Physics simulator: To dynamically model scenes sampled from the generative model, we interface
the base WebPPL model with a physics simulator implemented with the Box2D game engine (Catto,
2023). To simulate the table being bumped, we initialize each world with a high-velocity, bullet-like
object that collides with the table. By randomly sampling and simulating multiple such worlds, we
can obtain a distribution over outcomes. In this case, we are interested in the relative number of red
and yellow blocks on the ground, which we normalize to a 7-point Likert scale.2

Language-to-code translation model: Given a model of the world expressed in a PPL, we can
frame the problem of language understanding as language-to-code translation. In this work, we
focus on the subproblem of translating linguistic utterances about the state of a blockworld into
conditioning statements that capture the semantics of the language. However, since the base gener-
ative model and the query are themselves expressed in WebPPL code, the same methods could be
extended to translate these as well. For our translation model, we leveraged the few-shot prompting
capabilities of OpenAI’s Codex model (Chen et al., 2021). Queries to Codex (code-davinci-002)
were issued via the OpenAI API with the temperature parameter set to 0 to ensure that transla-
tions adhered to domain semantics and facilitate reproducibility. For each task, we automatically
constructed a prompt by concatenating the generative model code and 10 randomly-sampled exam-
ples from our domain, each manually annotated with code translations. We found Codex a highly

1The full code of the model is available at https://tinyurl.com/phys-lang.
2We note that, while the physics simulation has various hyperparameters, it offers robust out-of-box perfor-

mance; indeed, manually tuning the hyperparameters to directly optimize for performance on our benchmark
yielded marginal improvements of R2 < 0.04 relative to the naive settings that were used in our experiments.
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adept translator for our domain, requiring little prompt engineering to produce robust translations of
non-trivial phrases.

4 EXPERIMENTS
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Figure 2: Comparison of PiLoT and baseline models to human ratings at increasing levels of granularity. Left:
PiLoT broadly correlates with human Likert ratings across the 64 tasks in our benchmark. Middle: At each task
complexity, PiLoT achieves closer fidelity to human ratings than the two baselines, as measured by Wasserstein
distance. Right: Across individual tasks, humans (green) modulate their predictions to reflect differences in the
scenarios. PiLoT generally mirrors human ratings distributions (top three rows), while the zero-shot baseline
tends to be bimodal. (See Appendix A for the descriptions associated with each task.)

To compare human and model performance, we conduct an analogous experiment using our linguis-
tic reasoning benchmark, using our model and two baseline language models.

PiLoT: To directly compare our model with human performance, our experiment simulates model
answers to each stimulus on the same discretized 1-7 scale. For each stimulus, we translate the
linguistic scene description into condition statements, sample and simulate n = 10 sampled scenes
from the conditioned generative program, and construct a sample-based estimate over the distribu-
tion of scenes in which more blocks of a given color fall to the floor. For each stimulus, we then
simulate n = 40 independent sample-based inferences.

Zero-shot LLM: This baseline directly prompts an LLM (Codex) with the exact linguistic setup pro-
vided to subjects in the human experiment. We measure model responses over the same 1-7 scale of
confidence by calculating normalized token log-probabilities for each scale item shown to humans.

Few-shot LLM: This baseline augments the LLM query with a set of in-context examples of correct
task/answer pairs (Brown et al., 2020). Prior to querying the model with a given stimulus, we
additionally prompt the model with n = 10 (stimulus, human response) example pairs randomly
sampled from heldout stimuli and human responses.

Our model best predicts human judgments across the physical language benchmark. We cal-
culate correlations between human judgments and our model based on mean per-stimulus judg-
ments across human subjects, and across simulated Likert-scale judgments, and find that our model
is significantly correlated with human judgements on the benchmark overall (Fig. 2, R2 = 0.759,
p < 0.001). For baseline models, we calculate correlations between mean human judgments and a
weighted mean per-stimulus judgment from the probability mass that the LLMs assign to each 1-7
scale value. Table 2 (Overall, R2) in Appendix C shows that our model greatly outperforms both
baselines. We discuss our experimental findings in more granular detail in Appendix C.

5 CONCLUSION

We conclude with several avenues for future work. One clear next step might translate language
that specifies background knowledge or poses arbitrary new queries, broadening the integration of
language and physical reasoning. Our results also suggest that integrating this approach with prag-
matic interpretation and inference, such as in Frank & Goodman (2012), is crucial for capturing
a human-like understanding of language. Finally, integrating this approach with perception, using
inverse graphics (Yi et al., 2018) methods to construct structured scene representations from percep-
tual inputs, could broaden this modeling framework to bridge between language, our rich internal
physical reasoning, and grounding in the external, perceivable world.
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A LINGUISTIC PHYSICAL REASONING BENCHMARK EXAMPLES

Easy
(1 concept)

There are four stacks of red blocks, and there is one stack of yellow blocks.
[Numbers]

Task 1

There are short stacks of red blocks, and there are short stacks of yellow
blocks. [Gradable adjectives]

Task 16

Moderate
(2 concepts)

There are many yellow blocks on the left side of the table, there are no blocks
on the middle, and there are no blocks on the right side. [Spatial relations,
quantifiers]

Task 29

There are stacks of yellow blocks, and there are stacks of red blocks. All of
the yellow stacks are tall, and all of the red stacks are short. [Quantifiers,
gradable adjectives]

Task 38

Challenging
(3-4 concepts)

There is one stack of yellow blocks on the center of the table, and there is one
tall stack of red blocks near the yellow stack. [Numbers, spatial relations,
gradable adjectives]

Task 49

There are at least five stacks of blocks on the table. No more than half of the
stacks are tall. Most of the stacks are red, and most of the stacks are on the
right side. [Numbers, spatial relations, quantifiers, gradable adjectives]

Task 64

Table 1: Example stimuli from our linguistic physical reasoning benchmark, describing configu-
rations of blocks on a table. Scene descriptions are parameterized based on distinct conceptual
categories, and vary in complexity based on how many distinct conceptual kinds are invoked in a
given description.
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B PROBABILISTIC GENERATIVE MODEL

The code excerpts presented here have been simplified for legibility. As a reminder, our generative
model is written in the probabilistic programming language WebPPL (Goodman & Stuhlmüller,
2014). WebPPL extends the deterministic semantics of JavaScript to allow for functions whose
behavior is stochastic. For instance, to construct a new block stack, our generative model makes a
series of random choices to determine the stack’s color, height, and position on the table:

var blockColor = function () {
return flip() ? 'red' : 'yellow'

}
var stackHeight = function () {

return geometric(0.7, 1, 8)
}
var xPositionOnTable = function (table) {
return uniformDraw(

_.range((worldWidth / 2) - table.width / 2,
(worldWidth / 2) + table.width / 2)

)
}
var newStack = {

color: blockColor(),
height: stackHeight(),
x: xPositionOnTable(table),

}

The stochasticity that arises from these random choices is what makes our model probabilistic.
Each call to makeBlockWorld() (below) returns a different blockworld with a variable number of
stacks (between 1 and 8) in different configurations. Thus, makeBlockWorld() defines a probability
distribution over possible worlds and running it produces a sample from an uninformed prior.

var makeBlockWorld = function () {
var stacks = buildStacks(numStacks)
var world = {

stacks: stacks,
blocks: getBlockList(stacks),
table: { shape: 'rect', dims: [tableSize, tableSize], x: worldWidth / 2, ... },
force: generateForce(velocity, direction),

}
return world

}

Additionally, our model includes a set of functions that collectively define a domain semantics. By
composing statements in the semantics, we can model the meanings of various linguistic utterances.
As a simple example:

var isRed = function (obj) {
return obj.color == 'red'

}
var isTall = function (stack) {

return stack.height >= y_threshold_tall
}
var isOnLeft = function (obj) {

return obj.x <= x_threshold_left
}
var isNear = function (obj1) {
return function (obj2) {
return abs(obj1.x - obj2.x) <= x_threshold_near

}
}

8
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// There is a tall stack of red blocks on the left side of the table.
condition(filter(isTall, filter(isRed, filter(isOnLeft, world.stacks))).length == 1)

In WebPPL, calling condition() constrains samples from the generative model to be consistent
with the conditioning statement. In the above example, the conditioned model returns only block-
worlds that have a tall stack of red blocks on the left side of the table. Condition statements deliber-
ately admit imprecision (e.g., “There are at least two red blocks...”) and can be added sequentially
as new information is available. In this way, conditioning provides a natural way to model a rea-
soner with some prior over scenes who incrementally updates their beliefs to form a posterior over
possible worlds.

9
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C DETAILED EXPERIMENTAL RESULTS

Overall Easy Moderate Challenging
R2 WD R2 WD R2 WD R2 WD

Baseline (zero-shot) 0.40∗∗∗ 1.69 (0.05) 0.73∗∗∗ 1.82 (0.08) 0.37∗∗ 1.75 (0.10) 0.16 (N.S.) 1.55 (0.09)
Baseline (few-shot) 0.34∗∗∗ 1.20 (0.06) 0.54∗∗ 1.17 (0.15) 0.43∗∗∗ 1.22 (0.10) 0.06 (N.S.) 1.19 (0.10)
PiLoT (ours) 0.76∗∗∗ 0.62 (0.07) 0.91∗∗∗ 0.45 (0.10) 0.78∗∗∗ 0.69 (0.09) 0.69∗∗∗ 0.67 (0.13)

Number Spatial Quantifiers Gradable Adj.

Baseline (zero-shot) 0.27∗∗ 1.63 (0.06) 0.23∗∗ 1.67 (0.08) 0.47∗∗∗ 1.70 (0.08) 0.23∗ 1.63 (0.08)
Baseline (few-shot) 0.15∗ 1.19 (0.07) 0.17∗ 1.21 (0.08) 0.36∗∗∗ 1.28 (0.08) 0.30∗∗ 1.14 (0.09)
PiLoT (ours) 0.76∗∗∗ 0.57 (0.08) 0.67∗∗∗ 0.74 (0.10) 0.76∗∗∗ 0.67 (0.10) 0.80∗∗∗ 0.54 (0.07)

Table 2: Benchmark performance of PiLoT and baseline models in comparison to humans, showing
Pearson’s R2 and Wasserstein distance (WD) from human ratings. PiLoT outperforms both baselines
across the board. Top half: Results segmented by task complexity. Bottom half: Results segmented
by conceptual category. P-value thresholds: ∗ = P < 0.05, ∗∗ = P < 0.01, ∗∗∗ = P < 0.001, N.S.
= not significant.

By evaluating our model and baselines in comparison to human performance across the full linguistic
reasoning benchmark (Table 2, Overall), we find:

Our model best captures the distribution of human judgments on each stimulus. We calculate
Wasserstein Distances between the human distribution of judgments predicted for each stimulus,
and the distribution of judgments from our model and both baselines. Table 2 (WD) shows that our
model also is much closer to the distribution of human judgments than either baseline. Qualitative
inspection (Fig. 2) shows more revealing trends. The zeroshot model often produces contradictory,
extreme judgments (1 or 7); and the fewshot model is often relatively uniform.

By considering how stimuli complexity and specific conceptual categories impact model perfor-
mance, we find:

Our model is much more robust as stimuli increase in complexity. Table 2 (Easy, Moderate,
Challenging) shows that all models (ours, and both baselines) grow worse at predicting human be-
havior as stimuli complexity increases. However, our model is far more robust to stimuli complexity;
the baselines grow rapidly less correlated with human judgments as complexity increases, and on
the most challenging stimuli, our model still well-predicts human judgments (R2 = 0.69, p< 0.001),
whereas neither baseline is significantly correlated with human behavior.

LLM baselines struggle with number and spatial relations Table 2 (bottom half) also suggests
that LLM baselines perform unevenly across the varying kinds of concepts in these stimuli. Both
baselines appear strongest within stimuli involving Quantifiers (eg There are many red blocks and
few red blocks), and far worse in the other categories, suggesting they may only apply relatively
simple linguistic heuristics to reason about the physical query.

To better understand the limitations of our model, we manually inspect stimuli in which our model
deviates most from human judgments (n= 10 with greatest Wass. Distance). We find two suggestive
grounds for future work:

People draw exact logical inferences; our model uses sample-based approximation. Our model
consistently deviates from human judgments on stimuli that people can reason about exactly, such
as those involving equality (eg. Half of the blocks are yellow, and half are red.). Humans produce
a sharp, exact judgment, which our model approximates with sample-based inference. These cases
are one exception in which the fewshot LLM baseline outperforms our model, generalizing the exact
human judgements to new stimuli.

People may pragmatically interpret scene descriptions; our model uses literal semantics. Our
model may also deviate from human judgments when people apply an intuitive, pragmatic interpreta-
tion to the scene descriptions. Our model translations are based on a ground truth, literal semantics.
Humans, however, often appear to pragmatically strengthen descriptions based on assumed rele-
vance of all conditions – in many cases, for instances, people overweight the contribution of blocks
described to be on the table edges (eg. There are more red blocks than yellow blocks on the table,
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and there are more yellow blocks than red blocks on the edges of the table) relative to our model,
suggesting that people assume the edge is mentioned because it impacts the downstream result.

Perhaps surprisingly, we find that the model rarely makes obvious semantic translation er-
rors. In the 10 stimuli that we inspect, we find only one, phrase-level translation error:
There are several stacks of red blocks on the table is translated to condition(filter(isRed,
world.stacks).length > 1), when several intuitively suggests an upper and lower threshold.
While the model produces literal interpretations, as discussed above, we find no other obviously
incorrect translations.
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