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ABSTRACT

Dialog Structure Induction (DSI) is the task of inferring the latent dialog structure
(i.e., a set of dialog states and their temporal transitions) of a given goal-oriented
dialog. It is a critical component for modern dialogue system design and dis-
course analysis. Existing DSI approaches are often purely data-driven, deploy
models that infer latent states without access to domain knowledge, underperform
when the training corpus is limited/noisy, or have difficulty when test dialogs ex-
hibit distributional shifts from the training domain. This work explores a neural-
symbolic approach as a potential solution to these problems. We introduce Neural
Probabilistic Soft Logic Dialog Structure Induction (NEUPSL DSI), a principled
approach that injects symbolic knowledge into the latent space of a generative
neural model. Over three unsupervised dialog structure induction datasets the in-
jection of symbolic knowledge using NEUPSL DSI provides a consistent boost
in performance over the canonical baselines.

1 INTRODUCTION

The seamless integration of prior domain knowledge into the neural learning of language structure
has been an open challenge in the machine learning and natural language processing communities.
In this work, we inject symbolic knowledge into the neural learning process of a two-party dialog
structure induction (DSI) task (Zhai & Williams, 2014; Shi et al., 2019). This task aims to learn
a graph, known as the dialog structure, capturing the potential flow of states occurring in a dialog
dataset for a specific task-oriented domain, e.g., Figure 1 represents a possible dialog structure for
the goal-oriented task of booking a hotel. Nodes in the dialog structure represent conversational
topics or dialog acts that abstract the intent of individual utterances, and edges represent transitions
between dialog acts over successive turns of the dialog.

Similar to the motivation described in Shi et al. (2019), previous work in DSI has been split between
supervised and unsupervised methods. In particular, traditional supervised methods Jurafsky (1997)
relied on dialog structure hand-crafted by human domain experts. Unfortunately, this process is
labor-intensive and, in most situations, does not generalize easily to new domains. Therefore, re-
cent work attempts to overcome this limitation by studying unsupervised DSI; e.g., hidden Markov
models Chotimongkol (2008); lan Ritter et al. (2010); Zhai & Williams (2014) and more recently
Variational Recurrent Neural Networks (VRNN) Chung et al. (2015); Shi et al. (2019). However,
being purely data-driven, these approaches have difficulty with limited/noisy data and cannot easily
exploit domain-specific or domain-independent constraints on dialog that may be readily provided
by human experts (e.g., Greet utterances are typically made in the first couple of turns).

In this work, we propose Neural Probabilistic Soft Logic Dialog Structure Induction (NEUPSL
DSI). This practical neuro-symbolic approach improves the quality of learned dialog structure by
infusing domain knowledge into the end-to-end, gradient-based learning of a neural model. We
leverage Probabilistic Soft Logic (PSL), a well-studied soft logic formalism, to express domain
knowledge as soft rules in succinct and interpretable first-order logic statements that can be incor-
porated easily into differentiable learning (Bach et al., 2017; Pryor et al., 2022). This leads to a
simple method for knowledge injection with minimal change to the SGD-based training pipeline of
an existing neural generative model.

∗Work done during internship at Google.
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Figure 1: Example dialog structure for the goal-oriented task booking a hotel.

Our key contributions are: 1) We propose NEUPSL DSI, which introduces a novel smooth relax-
ation of PSL constraints tailored to ensure a rich gradient signal during back-propagation; and 2)
We evaluate NEUPSL DSI over synthetic and realistic dialog datasets under three settings: standard
generalization, domain generalization, and domain adaptation.
2 BACKGROUND ON PROBABILISTIC SOFT LOGIC
This work introduces soft constraints in a declarative fashion, similar to Probabilistic Soft Logic
(PSL) Bach et al. (2017). PSL models relational dependencies and structural constraints using first-
order logical rules, referred to as templates with arguments known as atoms. For example, the
statement “the first utterance in a dialog is likely to belong to the greet state” can be expressed as:

FIRSTUTT(U) → STATE(U, greet) (1)

Where (FIRSTUTT(U), STATE(U, greet)) are the atoms (i.e., atomic boolean statements) indicating,
respectively, whether an utterance U is the first utterance of the dialog, or if it belongs to the state
greet. The atoms in a PSL rule are grounded by replacing the free variables (such as U above) with
concrete instances from a domain of interest (e.g., the concrete utterance ’Hello!’) to create ground
atoms. The observed variables and target/decision variables of the probabilistic model correspond
to ground atoms constructed from the domain, e.g., FIRSTUTT(′Hello!′) is an observed variable
and STATE(′Hello!′, greet) is a target variable. PSL allows the originally Boolean-valued atoms to
take continuous truth values in the interval [0, 1]. In doing so, PSL replaces logical operations with a
form of soft logic called Lukasiewicz logic Klir & Yuan (1995): 1) A∧B = max(0.0, A+B− 1.0),
2) A ∨ B = min(1.0, A+B), and 3) ¬A = 1.0 − A1. A and B represent either ground atoms or
logical expressions over atoms and take values in [0, 1]. For example, PSL converts Equation 1 into:

ϕ = min{1, 1− FIRSTUTT(U)+STATE(U, greet))} (2)

PSL creates a collection of functions {ϕi}mi=1, called potentials, that map data to [0, 1]. PSL defines a
conditional probability density function over the unobserved random variables y given the observed
data x and non-negative weights λ known as the Hinge-Loss Markov Random Field (HL-MRF):

P (y|x) ∝ exp(−
m∑
i=1

λi · ϕi(y,x)) (3)

3 NEURAL PROBABILISTIC SOFT LOGIC DIALOG STRUCTURE INDUCTION
Our neuro-symbolic approach to dialog structure induction combines the principled formulation
of probabilistic soft logic (PSL) (Bach et al., 2017) rules with the state-of-the-art Direct-Discrete
Variational Recurrent Neural Network (DD-VRNN) (Shi et al., 2019). We refer to our approach
as Neural Probabilistic Soft Logic Dialog Structure Induction (NEUPSL DSI). Throughout this
section, we define the dialog structure learning problem, describe how to integrate the neural and
symbolic losses, and introduce an improvement to the neuro-symbolic gradient.
Problem Formulation Given a goal-oriented dialog corpus D, we consider the DSI problem of
learning a graph G underlying the corpus. More formally, a dialog structure is defined as a directed
graph G = (S, P ), where S = {s1, . . . , sm} encodes a set of dialog states, and P a probability
distribution p(st|s<t) representing the likelihood of transition between states (see Figure 1 for an
example). Given the underlying dialog structureG, a dialog di = {x1, . . . , xT } ∈ D is a temporally-
ordered set of utterances xt. Assume xt is defined according to an utterance distribution conditional
on past history p(xt|s≤t, x<t), and the state st is defined according to p(st|s<t). Given a dialog
corpus D = {di}ni=1, the task of DSI is to learn a directed graphical model G = (S, P ) as close to
the underlying graph as possible.
3.1 INTEGRATING NEURAL AND SYMBOLIC LEARNING UNDER NEUPSL DSI

We now introduce how the NEUPSL DSI approach formally integrates the DD-VRNN with the soft
symbolic constraints to allow for end-to-end gradient training. To do this, we build upon the founda-
tions developed by Pryor et al. (2022) on Neural Probabilistic Soft Logic (NeuPSL) by augmenting

1Appendix for alternative logic formulations.
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Figure 2: The high-level pipeline of the NEUPSL DSI learning procedure.

the standard unsupervised DD-VRNN loss (Shi et al., 2019) with a constraint loss. Figure 2 pro-
vides a graphical representation of this integration of the DD-VRNN and the symbolic constraints.
Intuitively, NEUPSL DSI can be described in three parts: instantiation, inference, and learning.

Instantiation of a NEUPSL DSI model uses a set of first-order logic templates to create a set of
potentials that define a loss used for learning and evaluation. Let pw be the DD-VRNN’s predictive
function of latent states with hidden parameters w and input utterances xvrnn. The output of this
function, defined as pw(xvrnn), will be the probability distribution representing the likelihood of
each latent class for a given utterance. Given a first-order symbolic rule ℓi(y,xvrnn,x) where the
decision variable y = pw(xvrnn) is the latent state prediction from the neural model pw and x are
the observed variables, we can instantiate a set of deep hinge-loss potentials of the form:

ϕw,i(xvrnn,x) = min(1, ℓi(pw(xvrnn),x)) (4)

For example, in reference to Equation 2, the decision variable y = pw(xvrnn) is associated with the
STATE(U, greet) random variables, leading to:

ℓi(pw(xvrnn),x) = 1− FIRSTUTT(U)+pw(xvrnn) (5)

The instantiated model described above breaks the NEUPSL DSI inference objective into neu-
ral inference and symbolic inference objectives. The neural inference objective is computed by
evaluating the DD-VRNN model predictions with respect to the standard loss function for DSI.
Given the deep hinge-loss potentials {ϕw,i}mi=1, the symbolic inference objective is the HL-MRF
likelihood (Equation 3) evaluated at the decision variables y = pw(xvrnn): Pw(y|x,xvrnn, λ) =
exp

(
−

∑m
i=1 λi · ϕw,i(xvrnn,x)

)
. Under NEUPSL DSI, the decision variables y = pw(xvrnn)

are implicitly controlled by neural network weights w, therefore the conventional MAP inference
in symbolic learning for decision variables y∗ = argminy Pw(y|xvrnn,x, λ) can be done simply
via neural weight minimization argminw Pw(y|xvrnn,x, λ). As a result, NEUPSL DSI learning
minimizes a constrained optimization objective:

w∗ = argmin
w

[
LDD−V RNN + λ ∗ Lconstraint

]
(6)

where Lconstraint is the log-likelihood of the hinge loss: −logPw(y|xvrnn,x, λ).
3.2 IMPROVING SOFT LOGIC CONSTRAINTS FOR GRADIENT LEARNING
The straightforward linear soft constraints used by the classic Lukasiewicz relaxation fail to pass
back gradients with a magnitude and instead pass back a direction (e.g., ±1). Formally, the gradient
of a potential ϕw(xvrnn,x) = min(1, ℓ(pw(xvrnn),x)) with respect to w is:

∂

∂w
ϕw =

∂

∂w
ℓ(pw, x) · 1ϕw<1 =

[ ∂

∂pw
ℓ(pw,x)

]
· ∂

∂w
pw · 1ϕw<1 (7)

Here ℓ(pw,x) = a·pw+bwhere a, b ∈ R and pw ∈ [0, 1], which leads to the gradient ∂
∂pw

ℓ(pw,x) =

a. Observing the three Lukasiewicz operations described in Section 2, it is clear that a will always
result in ±1 unless there are multiple pw per constraint. As a result, this classic soft relaxation leads
to a naive, non-smooth gradient ( ∂

∂wϕw =
[
a1ϕw<1

]
· ∂
∂wpw) that mostly consists of the predictive

probability gradient ∂
∂wpw. It barely informs the model of the degree to which pw satisfies the

symbolic constraint ϕw (other than the non-smooth step function 1ϕw<1), thereby creating challenges
in gradient-based learning. In this work, we propose a novel log-based relaxation that provides
smoother and more informative gradient information for the symbolic constraints:

ψw(xvrnn,x) = log
(
ϕw(xvrnn,x)

)
= log

(
min(1, ℓ(pw(xvrnn),x))

)
(8)

This seemingly simple transformation brings a non-trivial change to the gradient behavior:
∂

∂w
ψw =

1

ϕw
· ∂

∂w
ϕw =

[ a
ϕw

1ϕw<1

]
· ∂

∂w
pw (9)
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Dataset Setting Method
Hidden Representation Learning Structure InductionFull Few-Shot

( Class-Balanced Accuracy ) ( Class-Balanced Accuracy ) ( AMI )

MultiWoZ Standard
Generalization

DD-VRNN 0.804 ± 0.037 0.643 ± 0.038 0.451 ± 0.042
NEUPSL DSI 0.806 ± 0.051 0.689 ± 0.038 0.618 ± 0.028

SGD
Synthetic

Standard
Generalization

DD-VRNN 0.949 ± 0.005 0.598 ± 0.019 0.553 ± 0.017
NEUPSL DSI 0.941 ± 0.009 0.765 ± 0.012 0.826 ± 0.006

SGD
Real

Standard
Generalization

DD-VRNN 0.661 ± 0.015 0.357 ± 0.015 0.448 ± 0.019
NEUPSL DSI 0.663 ± 0.015 0.517 ± 0.021 0.539 ± 0.048

Domain
Generalization

DD-VRNN 0.268 ± 0.012 0.320 ± 0.029 0.476 ± 0.029
NEUPSL DSI 0.299 ± 0.009 0.528 ± 0.026 0.541 ± 0.036

Domain
Adaptation

DD-VRNN 0.308 ± 0.011 0.505 ± 0.015 0.514 ± 0.028
NEUPSL DSI 0.297 ± 0.025 0.541 ± 0.023 0.559 ± 0.045

Table 1: Test set performance on all datasets. All reported results are averaged over 10 splits. The
highest-performing methods per dataset and learning setting are bolded.

The gradient now contains 1
ϕw

, which informs the model of the degree to which the prediction sat-
isfies the symbolic constraint. As a result, when the satisfaction of a rule ϕw is low (i.e., uncertain),
the gradient magnitude will be high, and when the satisfaction of the rule is high, the gradient mag-
nitude will be low. In this way, the gradient of the symbolic constraint guides the neural model to
focus on learning the challenging examples that violate the symbolic rules.
4 EXPERIMENTAL EVALUATION
Datasets Experiments are conducted using three goal-oriented dialog datasets: MultiWoZ 2.1 syn-
thetic Campagna et al. (2020) and two versions of the Schema Guided Dialog (SGD) dataset; SGD-
synthetic (where the utterance is generated by a template-based dialog simulator) and SGD-real
(which replaces the machine-generated utterances of SGD-synthetic with its human-paraphrased
counterparts) (Rastogi et al., 2020). SGD-real dataset is evaluated over three unique settings: stan-
dard generalization (train and test over the same domain), domain generalization (train and test
over different domains), and domain adaptation (train on (potentially labeled) data from the training
domain and unlabeled data from the test domain, and test on evaluation data from the test domain).2

Constraints In the synthetic MultiWoZ setting, we introduce a set of 11 structural domain agnostic
dialog rules. An example of one of these rules can be seen in Equation 1. These rules are intro-
duced to represent general facts about dialogs, with the goal of showing how the incorporation of a
few expert-designed rules can drastically improve generalization performance. For SGD settings, a
single dialog rule that encodes the concept that dialog acts should contain utterances with correlated
tokens is used, e.g., utterances with ’hello’ are likely to belong to the greet state. This rule demon-
strates the boost in performance a model can achieve from a simple source of prior information.1

Metrics and Methodology We assess the correctness of learned latent dialog structure and the qual-
ity of learned hidden representation using Adjusted Mutual Information (AMI) and linear probing,
respectively. AMI allows for a comparison between ground truth labels3 (e.g., ”greet”, etc.) and
latent state predictions (e.g., State1, etc.). Linear probing trains a lightweight probing model on
top of the frozen learned representation and evaluates the linear model’s generalization performance
for supervised tasks Tenney et al. (2019). We train both a full supervision and few-shot supervision
linear classifier on top of input features extracted from the penultimate layer of the DD-VRNN. Full
supervision averages the class-balanced accuracy of two separate models that classify dialog acts
(e.g., ”greet”, etc.) and domains (”hotel”, etc.), respectively. Few-shot averages the class-balanced
accuracy of models classifying dialog acts with one, five, and ten-shot settings.1

Table 1 summarizes the results of NEUPSL DSI and DD-VRNN in unsupervised settings. NEUPSL
DSI outperforms the strictly data-driven DD-VRNN on AMI by 4%-27% depending on the setting
while maintaining or improving the hidden representation quality. To reiterate, this improvement
is achieved without supervision in the form of labels, but rather a few structural constraints. Com-
paring AMI performance on SGD-real across different settings (standard generalization v.s. domain
generalization/adaptation), we see the NEUPSL DSI consistently improves over DD-VRNN, albeit
with the advantage slightly diminished in the non-standard generalization settings.

5 CONCLUSION
This paper introduces NEUPSL DSI, a novel neuro-symbolic learning framework that guides latent
dialog structure learning using differentiable symbolic knowledge. Through extensive empirical
evaluations, we illustrate how the injection of just a few domain knowledge rules significantly im-
proves both correctness and hidden representation quality in this unsupervised NLP task.

2Appendix describes further details.
3These labels were only used for final evaluation, not for training or hyperparameter tuning.
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# Token Constraint

w1 : HASWORD(Utt, Class) → STATE(Utt, Class)

Figure 3: SGD Structure Induction Constraint Model

A MODEL DETAILS

This section provides additional details on the NEUPSL DSI models for the Multi-WoZ and SGD
settings. Throughout these subsections, we cover the symbolic constraints, evaluation metrics, and
hyperparameters. The code is under the Apache 2.0 license.

A.1 SGD CONSTRAINTS

The NEUPSL DSI model uses a single constraint for all SGD settings (synthetic, standard, domain
generalization, and domain adaptation). Figure 3 provides an overview of the constraint, which
contains the following two predicates:

1. STATE(Utt,Class)
The STATE continuous valued predicate is the probability that an utterance, identified by the
argument Utt, belongs to a dialog state, identified by the argument Class. For instance,
the utterance hello world ! for the greet dialog state would create a predicate with a value
between zero and one, i.e., STATE(hello world !greet) = 0.7.

2. HASWORD(Utt,Class)
The HASWORD binary predicate indicates if an utterance, identified by the argu-
ment Utt, contains a known token for a particular class, identified by the argu-
ment Class. For instance if a known token associated with the greet class is
hello, then the utterance hello world ! would create a predicate with value one, i.e.
HASWORD(hello world !, greet) = 1.

This token constraint encodes the prior knowledge that utterances’ are likely to belong to dialog
states when an utterance contains tokens representing that state. For example, if a known token
associated with the greet class is hello, then the utterance hello world ! is likely to belong to the
greet state. The primary purpose of incorporating this constraint into the model is to show how
even a small amount of prior knowledge can aid predictions. To get the set of tokens associated with
each state, we trained a supervised linear classifier where the input is an utterance, and the label is
the class. After training, every token is individually run through the trained model to get a set of
logits over each class. These logits represent the relative importance that each token has over every
class. Sparsity is introduced to this set of logits, leaving only the top 0.1% of values and replacing
the others with zeros. This sparsity reduces the set of 261,651 logits to 262 non-zero logits.

A.2 MULTI-WOZ CONSTRAINTS

The NEUPSL DSI model for the Multi-WoZ setting uses a set of dialog constraints, which can be
broken into dialog start, middle, and end. Figure 4 provides an overview of the constraints, which
contains the following 11 predicates:

1. STATE(Utt,Class)
The STATE continuous valued predicate is the probability that an utterance, identified by the
argument Utt, belongs to a dialog state, identified by the argument Class. For instance,
the utterance hello world ! for the greet dialog state would create a predicate with a value
between zero and one, i.e., STATE(hello world !greet) = 0.7.

2. FIRSTUTT(Utt)
The FIRSTUTT binary predicate indicates if an utterance, identified by the argument Utt,
is the first utterance in a dialog.
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# Dialog Start

w1 : ¬FIRSTUTT(Utt) → ¬STATE(Utt, greet)

w2 : FIRSTUTT(Utt) ∧ HASGREETWORD(Utt) → STATE(Utt, greet)

w3 : FIRSTUTT(Utt) ∧ ¬HASGREETWORD(Utt) → STATE(Utt, init request)

# Dialog Middle

w4 : PREVUTT(Utt1, Utt2) ∧ STATE(Utt2, greet) → STATE(Utt1, init request)

w5 : PREVUTT(Utt1, Utt2) ∧ ¬STATE(Utt2, greet) → ¬STATE(Utt1, init request)

w6 : PREVUTT(Utt1, Utt2) ∧ STATE(Utt2, init request) → STATE(Utt1, second request)

w7 : PREVUTT(Utt1, Utt2) ∧ STATE(Utt2, second request) ∧ HASINFOQUESTIONWORD(Utt1) → STATE(Utt1, info question)

w8 : PREVUTT(Utt1, Utt2) ∧ STATE(Utt2, second request) ∧ HASSLOTQUESTIONWORD(Utt1) → STATE(Utt1, slot question)

w9 : PREVUTT(Utt1, Utt2) ∧ STATE(Utt2, end) ∧ HASCANCELWORD(Utt1) → STATE(Utt1, cancel)

# Dialog End

w10 : LASTUTT(Utt) ∧ HASENDWORD(Utt) → STATE(Utt, end)

w11 : LASTUTT(Utt) ∧ HASACCEPTWORD(Utt) → STATE(Utt, accept)

w12 : LASTUTT(Utt) ∧ HASINSISTWORD(Utt) → STATE(Utt, insist)

Figure 4: MultiWoZ Structure Induction Constraint Model

3. LASTUTT(Utt)
The LASTUTT binary predicate indicates if an utterance, identified by the argument Utt,
is the last utterance in a dialog.

4. PREVUTT(Utt1, Utt2)
The PREVUTT binary predicate indicates if an utterance, identified by the argument Utt2,
is the previous utterance in a dialog of another utterance, identified by the argument Utt1.

5. HASGREETWORD(Utt)
The HASGREETWORD binary predicate indicates if an utterance, identified by the argu-
ment Utt, contains a known token for the greet class. The list of known greet words is
[′hello′,′ hi′].

6. HASINFOQUESTIONWORD(Utt)
The HASINFOQUESTIONWORD binary predicate indicates if an utterance, identified by
the argument Utt, contains a known token for the info question class. The list of known
info question words is [′address′,′ phone′].

7. HASSLOTQUESTIONWORD(Utt)
The HASSLOTQUESTIONWORD binary predicate indicates if an utterance, identified by
the argument Utt, contains a known token for the slot question class. The list of known
slot question words is [′what′,′ ?′].

8. HASINSISTWORD(Utt)
The HASINSISTWORD binary predicate indicates if an utterance, identified by the argu-
ment Utt, contains a known token for the insist class. The list of known insist words is
[′sure′,′ no′].

9. HASCANCELWORD(Utt)
The HASCANCELWORD binary predicate indicates if an utterance, identified by the argu-
ment Utt, contains a known token for the cancel class. The list of known cancel words is
[′no′].

10. HASACCEPTWORD(Utt)
The HASACCEPTWORD binary predicate indicates if an utterance, identified by the argu-
ment Utt, contains a known token for the accept class. The list of known accept words is
[′yes′,′ great′].

11. HASENDWORD(Utt)
The HASENDWORD binary predicate indicates if an utterance, identified by the argu-
ment Utt, contains a known token for the end class. The list of known end words is
[′thank′,′ thanks′].
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The dialog start constraints take advantage of the inherent structure built into the beginning of task-
oriented dialogs. In the same order as the dialog start rules in Figure 4: 1) If the first turn utterance
does not contain a known greet word, then it does not belong to the greet state. 2) If the first turn
utterance contains a known greet word, then it belongs to the greet state. 3) If the first turn utterance
does not contain a known greet word, then it belongs to the initial request state.

The dialog middle constraints exploit the temporal dependencies within the middle of a dialog. In the
same order as the dialog middle rules in Figure 4: 1) If the previous utterance belongs to the greet
state, then the current utterance belongs to the initial request state. 2) If the previous utterance does
not belong to the greet state, then the current utterance does not belong to the initial request state.
3) If the previous utterance belongs to the initial request state, then the current utterance belongs
to the second request state. 4) If the previous utterance belongs to the second request state and it
has a known info question token, then the current utterance belongs to the info question state. 5) If
the previous utterance belongs to the second request state and it has a known slot question token,
then the current utterance belongs to the slot question state. 4) If the previous utterance belongs to
the end state and it has a known cancel token, then the current utterance belongs to the cancel state.

The dialog end constraints take advantage of the inherent structure built into the end of task-oriented
dialogs. In the same order as the dialog end rules in Figure 4: 1) If the last turn utterance contains
a known end word, then it belongs to the end state. 2) If the last turn utterance contains a known
accept word, then it belongs to the accept state. 3) If the last turn utterance contains a known insist
word, then it belongs to the insist state.

A.3 EVALUATION METRICS

Adjusted Mutual Information (AMI) evaluates dialog structure prediction by evaluating the correct-
ness of the dialog state assignments. Let U∗ = {U∗

1 , . . . , U
∗
C∗} be the ground-truth assignment of

dialog states for all utterances in the corpus, and U = {U1, . . . , UC} be the predicted assignment
of dialog states based on the learned dialog structure model. U∗ and U are not directly comparable
because they draw from different base sets of states (U∗ from the ground truth set of states and U
from the collection of states induced by the DD-VRNN) that may even have different cardinalities.
We address this problem using Adjusted Mutual Information (AMI), a metric developed initially to
compare unsupervised clustering algorithms. Intuitively, AMI treats each assignment as a probabil-
ity distribution over states and uses Mutual Information to measure their similarity, adjusting for the
fact that larger clusters tend to have higher MI. AMI is defined as follows:

AMI(U,U∗) =

MI(U,U∗)− E(MI(U,U∗))

Avg(H(U), H(U∗))− E(MI(U,U∗))

Where MI(U,U∗) is the mutual information score, E(MI(U,U∗)) is the expected mutual infor-
mation over all possible assignments, and Avg(H(U), H(U∗)) is the average entropy of the two
clusters (Vinh et al., 2010).

A.4 HYPERPARAMETERS

The DD-VRNN uses an LSTM Hochreiter & Schmidhuber (1997) with 200-400 units for the RNNs,
and fully-connected highly flexible feature extraction functions with a dropout of 0.4 for the input
x, the latent vector z, the prior, the encoder and the decoder. The input to the DD-VRNN is the
utterances with a 300-dimension word embedding created using a GloVe embedding Pennington
et al. (2014) and a Bert embedding (Devlin et al., 2019). The maximum utterance word length was
set to 40, the maximum length of a dialog was set to 10, and the tunable weight, γ, was set to 0.1.
The total number of parameters is 26,033,659 for the model with GloVe embedding and 135,368,227
with Bert embedding. The experiments are run in Google TPU V4, and the total GPU hours for all
finetuning are 326 GPU hours.

B DATASETS

This section provides additional information on the SGD, SGD synthetic, and MultiWoZ 2.1 syn-
thetic datasets.
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Figure 5: Ground truth dialog structure used to generate the MultiWoZ 2.1 dataset. The transition
graph shows transitions over 0.05%.

B.1 SGD

The Schema-Guided Dialog (SGD) Rastogi et al. (2020) is a task-oriented conversation dataset
involving interactions with services and APIs covering 20 domains. There are overlapping function-
alities over many APIs, but their interfaces differ. One conversion may involve multiple domains.
The train set contains conversions from 16 domains, with four held-out domains only present in test
sets. This gives 34,308 in-domain and 5,441 out-of-domain test examples. To evaluate the model’s
generalization, we evaluate the model performance on both test sets. In specific, we establish three
different evaluation protocols.

• SGD Standard Generalization We train the model using the SGD train set and evaluate it
on the in-domain test set.

• SGD Domain Generalization We train the model using the SGD train set and evaluate it
on the out-of-domain test set.

• SGD Domain Adaptation We train the model using the SGD train set and label-wiped
in-domain and out-of-domain test sets and evaluate it on the out-of-domain test set.

B.2 SGD SYNTHETIC

Using the template-based generator from the SGD developers Kale & Rastogi (2020), we generate
10,800 synthetic dialogs using the same APIs and dialog states as the official SGD data. We split
the examples with 75% train and 25% test. The schema-guided generator code is under Apache 2.0
license: https://github.com/google-research/task-oriented-dialogue/blob/main/LICENSE.

B.3 MULITWOZ 2.1 SYNTHETIC

MultiWoZ 2.1 synthetic Campagna et al. (2020) is a multi-domain goal-oriented dataset cover-
ing five domains (Attraction, Hotel, Restaurant, Taxi, and Train) and nine dialog acts (greet,
initial request, second request, insist, info question, slot question, accept, cancel, and
end). Following Campagna et al. (2020), we generate 104 synthetic dialogs from a known ground-
truth dialog structure. Figure 5 provides an overview of the ground truth dialog structure, which is
based on the original MultiWoz 2.1 dataset Eric et al. (2019), used through the generative process.
These 104 synthetic dialogs are randomly sampled without replacement to create ten splits with 80%
train, 10% test, and 10% validation. The MultiWoZ 2.1 synthetic code is under the MIT License:
https://github.com/stanford-oval/zero-shot-multiwoz-acl2020. The MultiWoZ 2.1 code uses genie
under the MIT License: https://github.com/stanford-oval/genie-k8s/blob/master/LICENSE.

C ALTERNATIVE SOFT LOGIC APPROXIMATIONS

This work is highly related to the active field of neuro-symbolic computing (NeSy) (d’Avila Garcez
et al., 2002; Bader & Hitzler, 2005; d’Avila Garcez et al., 2009; Serafini & d’Avila Garcez, 2016;
Besold et al., 2017; Donadello et al., 2017; Yang et al., 2017; Evans & Grefenstette, 2018; Manhaeve
et al., 2021; d’Avila Garcez et al., 2019; De Raedt et al., 2020; Lamb et al., 2020; Badreddine et al.,
2022). NeSy methods aim to incorporate logic-based reasoning with neural networks. As such,
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Soft/Fuzzy Logic Hidden Representation Learning Structure InductionFull Few-Shot
( Class Balanced Accuracy ) ( Class Balanced Accuracy ) ( AMI )

Random 0.0261 ± 0.0013 0.0261 ± 0.0013 0.0000 ± 0.0004

Lukasiewicz 0.9210 ± 0.0160 0.6579 ± 0.0204 0.6037 ± 0.0120
Product Real 0.9232 ± 0.0147 0.6479 ± 0.0367 0.5202 ± 0.0455

Table 2: Test set AMI and standard deviation on MulitWoZ data set on two soft logic relaxations.

various principled soft/fuzzy logic formulations have shown to work quite well as knowledge used
within the loss of a NeSy approach (van Krieken et al., 2022; Diligenti et al., 2016; Badreddine et al.,
2022; Manhaeve et al., 2021). While this work primarily focuses on using Lukasiewicz logic Klir
& Yuan (1995), we are interested in how different soft/fuzzy logic formulations affect the learning
process. We, therefore, explore an alternative soft logic formulation, Product Real logic, which
is used in another principled NeSy framework called Logic Tensor Networks (Badreddine et al.,
2022). Similar to the Lukasiewicz logic, Product Real logic approximates logical clauses with linear
inequalities:

A ∧B = A ∗B
A ∨B = A+B −A ∗B

¬A = 1.0−A

where A and B are either ground atoms or logical expressions over atoms. In either case, they have
values between [0,1].

Table 2 presents the performance comparison of two soft logic approximations, Lukasiewicz and
Product Real, on the MultiWoZ dataset. Surprisingly, in structure induction, Lukasiewicz logic
outperformed Product Real logic by over 7%. Though interestingly, the hidden representation learn-
ing performance was roughly equivalent between the two soft logic formulations. These findings
highlight the importance of selecting the appropriate soft/fuzzy logic formulation for a given prob-
lem. Further investigation into different soft logic formulations would be an interesting direction for
future research to gain a more comprehensive understanding of their potential applications.
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