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ABSTRACT

Object-centric learning aims to decompose the visual data into a set of individ-
ual entities, which is distinct from traditional deep learning models that repre-
sent a scene with a global feature. Leveraging advanced architectures such as
Transformer decoders, slot-based models have shown promising results in un-
supervised object discovery from naturalistic inputs. In this paper, we instead
focus on the slot-to-image reconstruction quality of these models, a previously
overlooked topic which is important for generation tasks such as video prediction
and scene editing. Despite great segmentation outputs, recent unsupervised slot
models produce blurry images and temporally inconsistent videos. We address
this problem by introducing slot-conditioned diffusion models due to their strong
generation capacity. Our proposed method, SlotDiffusion, not only achieves bet-
ter unsupervised segmentation performance, but also generates results of higher
quality compared to previous state-of-the-art on both image and video datasets.

1 INTRODUCTION

Humans perceive the world with discrete concepts such as objects and events (Spelke & Kinzler,
2007), which can be processed independently and composed to support systematic generalization of
intelligence (Greff et al., 2020). Similarly, object-centric learning that aims to equip machines with
such structured representation also has the potential to improve the generalizability, robustness and
interpretability of AI algorithms (Lake et al., 2017; Schölkopf et al., 2021). For example, explicit
decomposition of scenes into objects facilitates visual reasoning tasks (Chen et al., 2020; Ding et al.,
2021b;a). Also, capturing the compositional structure of world is useful for image generation (Singh
et al., 2021; Sylvain et al., 2021) and future prediction (Ye et al., 2019; Wu et al., 2022).

Due to its practical implications, unsupervised object discovery from visual data has been a long-
standing problem in computer vision. Earlier attempts focus on synthetic data (Johnson et al., 2017;
Yi et al., 2019) and bake in strong priors in their frameworks (Jiang et al., 2019; Lin et al., 2020), pre-
venting them from scaling to more complex scenes. Later works generalize the Scaled Dot-Product
Attention (Vaswani et al., 2017) and propose the Slot Attention mechanism (Locatello et al., 2020),
which eliminates domain-specific priors (Kipf et al., 2021; Singh et al., 2022). To work on real-
world data, recent approaches introduce additional supervision signals such as optical flow (Yang
et al., 2021), depth (Elsayed et al., 2022) and pre-trained feature encoder (Seitzer et al., 2022).

Despite tremendous progress in object segmentation, we argue that the generation capacity of
slot-based models is underexplored. Wu et al. (2022) shows that, while the autoregressive (AR)
Transformer-based decoder enables STEVE (Singh et al., 2022) to handle more complex videos, its
slot-to-image reconstruction quality is worse than the naive CNN-based decoder in SAVi (Kipf et al.,
2021), which hinders its application to generation tasks. In this paper, we propose SlotDiffusion, an
unsupervised object-centric model with a slot-conditioned diffusion model (DM) (Ho et al., 2020)
decoder. Thanks to the strong capacity of DMs, SlotDiffusion achieves a better trade-off between
segmentation and reconstruction compared to previous state-of-the-art on 4 datasets.

2 BACKGROUND: UNSUPERVISED OBJECT-CENTRIC LEARNING

The goal of unsupervised object-centric learning is to represent the scene with a set of object slots
without instance-level supervision. Here, we review the SAVi family which builds on the Slot At-
tention (Locatello et al., 2020) operation and runs on videos in a recurrent encoder-decoder manner.
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Given T input frames {xt}Tt=1, SAVi first leverages a per-frame image encoder to extract features,
adds positional encodings, and flattens them into a set of vectors ht = fenc(xt) ∈ RM×Denc . Then,
the model initializes N slots S̃t ∈ RN×Dslot from a set of learnable vectors (t = 1), and updates
them with Slot Attention as St = fSA(S̃t,ht). fSA performs soft feature clustering, where slots
compete with each other to capture certain area of the input via iterative cross-attention (Vaswani
et al., 2017). To achieve temporally aligned slots, SAVi leverages a Transformer-based predictor to
initialize S̃t (t ≥ 2) as S̃t = fpred(St−1). Finally, these models use a decoder fdec to reconstruct the
input xt from slots St as training signal. See Figure 4 in the Appendix for the model pipeline.

Mixture-based decoder. In vanilla SAVi (Kipf et al., 2021), fdec consists of a stack of up-sampling
deconvolution layers. It decodes each slot Si

t to an RGB image yi
t and an alpha mask mi

t, which are
combined into the final reconstructed image x̂t. The training loss is simply a reconstruction MSE:

(yi
t,m

i
t) = fmix

dec (Si
t), x̂t =

N∑
i=1

mi
t ⊙ yi

t, Limage =

T∑
t=1

||xt − x̂t||2. (1)

Transformer-based decoder. The above mixture-based decoder has limited modeling capacity as it
decodes each slot separately without interactions. Also, pixel-level reconstruction biases the model
to low-level color statistics, which only proves effective on objects with uniform colors, and cannot
scale to complex data with textured objects. Current state-of-the-art model STEVE (Singh et al.,
2022) thus proposes to reconstruct intermediate features produced by a trained network (Singh et al.,
2021). Given frame xt, STEVE leverages a dVAE encoder to convert it into a sequence of patch
tokens ot = {oi

t}Li=1, which serve as the reconstruction targets for the AR Transformer decoder:

ot = f dVAE
enc (xt), ôl

t = f trans
dec (St;o

1
t , ...,o

l−1
t ), Ltoken =

T∑
t=1

L∑
l=1

CrossEntropy(ol
t, ô

l
t). (2)

Thanks to the cross-attention mechanism in Transformer decoder and the feature-level reconstruc-
tion objective, STEVE succeeds on naturalistic videos with textured objects and background.

3 METHOD

Object-centric generative models (Singh et al., 2021; Zoran et al., 2021) often decompose the gener-
ation process to first predicting the object slots, followed by decoding slots back to the pixel space.
As shown in Wu et al. (2022), the generation quality is largely bounded by the slot decoder. STEVE’s
Transformer-based decoder produces low-quality results due to two reasons: i) treating images as
sequences of tokens ignores their spatial structure; ii) autoregressive token prediction causes severe
error accumulation. We overcome these drawbacks by introducing diffusion models as the slot de-
coder, which preserve the spatial dimension of images, and iteratively refine the generation results.

Diffusion model. DMs (Sohl-Dickstein et al., 2015; Ho et al., 2020) are probabilistic models that
learn a data distribution pθ(X0) by gradually denoising a standard Gaussian distribution, in the
form of pθ(X0) =

∫
pθ(X0:T ) dX1:T , where X1:T are intermediate denoising results. The forward

process of DMs is a Markov Chain that adds Gaussian noise to the clean data X0, which is controlled
by a pre-defined variance schedule {βt}Tt=1. Let αt = 1− βt and ᾱt =

∏t
s=1 αs, we have:

q(Xt|Xt−1) = N (Xt|
√
1− βtXt−1, βtI) ⇒ q(Xt|X0) = N (Xt|

√
ᾱtX0, (1− ᾱt)I). (3)

During training, a network ϵθ(Xt, t) is trained to predict the noise applied to a noisy sample:

Xt =
√
ᾱtX0 +

√
1− ᾱtϵt, LDM = ||ϵt − ϵθ(Xt, t)||2, where ϵt ∼ N (0, I). (4)

At inference time, we can start from a random Gaussian noise, and apply the trained denoiser to
iteratively refine the sample. See Appendix C for detailed formulation of diffusion models.

SlotDiffusion. Our model consists of the same image encoder, Slot Attention module and slot pre-
dictor as SAVi and STEVE, while only replacing the slot decoder with the DM-based one. Inspired
by STEVE and Latent Diffusion Model (LDM) (Rombach et al., 2022), we train our DM decoder to
denoise features in the latent space. This improves the segmentation results with higher-level recon-
struction target, and greatly reduce the training cost. Specifically, we pre-train a VQ-VAE (Razavi
et al., 2019) to extract feature maps z ∈ Rh×w×Dvq from x before training SlotDiffusion. From
now on we omit t as video timestamps, and will use it to only represent diffusion steps in DM.
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(a) CLEVRTex textured objects and scenes (b) CelebA human face
Figure 1: Image reconstruction results on both datasets. Note the object textures and human hairs.

To condition the decoder on slots S, we notice that slots are N 1D feature vectors, which are similar
to text embeddings output by language models. Therefore, we follow text-guided LDM to guide the
denoising process via cross-attention as o = CrossAttention(Q(õ),K(S), V (S)). Here, Q, K, V
are learnable linear projections, õ is an intermediate feature map from ϵθ, and o is the feature map
fused with slots information. In practice, we perform conditioning after several layers in the DM
decoder. Overall, our model is trained with a slot-conditioned denoising loss over VQ-VAE features:

zt =
√
ᾱtz + (1− ᾱt)ϵt, Lslot = ||ϵt − ϵθ(zt, t,S)||2, where ϵt ∼ N (0, I). (5)

4 EXPERIMENTS

SlotDiffusion is general unsupervised object-centric learning framework that can be applied to both
image and video datasets. We evaluate our model on two image and two video datasets in terms of
reconstruction error (generation power) and segmentation results (scene decomposition quality).

4.1 EXPERIMENTAL SETUP

We briefly introduce the experimental setup here, which is detailed in Appendix D.

Datasets. We select the two most complex image datasets from SLATE (Singh et al., 2021), namely,
CLEVRTex (Karazija et al., 2021) and CelebA (Liu et al., 2015). For video datasets, we follow
STEVE (Singh et al., 2022) and SAVi (Kipf et al., 2021) to use MOVi-D/E (Greff et al., 2022).

Metrics. To evaluate the generation quality, we adopt the mean squared error (MSE) between the
visual inputs and the reconstructions decoded from slots. We also compute the VGG perceptual
distance (LPIPS) (Zhang et al., 2018). For segmentation results, we measure the FG-ARI and mIoU
which are two widely used metrics in unsupervised object-centric learning papers.

Baselines. We compare SlotDiffusion with state-of-the-art fully unsupervised object-centric models.
On image datasets, we adopt Slot Attention (SA) (Locatello et al., 2020) and SLATE (Singh et al.,
2021). On video datasets we adopt SAVi (Kipf et al., 2021) and STEVE (Singh et al., 2022). They
are representative models which use the mixture-based decoder and the Transformer-based decoder.

Our implementation details. We use the same image encoder, Slot Attention module, and transition
predictor as baselines, while only replacing the slot decoder with the conditional LDM. We first pre-
train VQ-VAE on each dataset, and then freeze it and train the object-centric model with Eq. (5).

4.2 RESULTS ON IMAGE DATASETS
Method CLEVRTex CelebA

MSE ↓ LPIPS ↓ FG-ARI ↑ mIoU ↑ MSE ↓ LPIPS ↓

SA 212.4 0.410 67.92 53.70 243.3 0.284
SLATE 313.3 0.391 67.50 56.82 744.8 0.324

Ours 237.5 0.126 68.39 57.56 439.0 0.212

Table 1: Evaluation results on image datasets. SA stands
for Slot Attention. FG-ARI and mIoU numbers are in %.

Table 1 presents the results. For reconstruc-
tion quality, SlotDiffusion outperforms both
baselines with a sizeable margin in LPIPS,
and achieves the second lowest MSE. As
discussed in Zhang et al. (2018), LPIPS
aligns well with human perception, while
MSE is a poor metric as it favors blurry re-
sults. This can be verified by the qualitative results in Figure 1, where SA and SLATE both recon-
struct over-smoothing images with distorted object attributes. On the contrary, our DM decoder is
able to iteratively refine the results, leading to accurate textures and details such as hairs.

For scene decomposition, we only evaluate on CLEVRTex as CelebA does not provide object mask
annotations. All three methods achieve similar FG-ARI score, but we show clear advancement
in terms of mIoU. This is because SlotDiffusion segments objects from background sharply. In
contrast, the baselines introduce lots of false positives by assigning background pixels to objects.
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Method MOVi-D MOVi-E
MSE ↓ LPIPS ↓ FG-ARI ↑ mIoU ↑ MSE ↓ LPIPS ↓ FG-ARI ↑ mIoU ↑

SAVi 237.2 0.532 39.63 17.76 255.2 0.548 46.70 23.49
STEVE 673.2 0.507 49.43 29.51 603.2 0.508 56.04 27.86

Ours 632.7 0.400 52.09 31.65 586.5 0.387 59.99 30.16

Table 2: Evaluation results on MOVi-D and MOVi-E video datasets. FG-ARI and mIoU numbers are in %.

Figure 2: Qualitative results of slot-to-video reconstruction on MOVi-E. On the right, we report the metrics of
the visualized videos for each model. Despite a low MSE, the SAVi results are very blurry.

Figure 3: Segmentation results as a function of video length. We show FG-ARI and mIoU on both datasets.

4.3 RESULTS ON VIDEO DATASETS

We show the quantitative results on both video datasets in Table 2. For reconstruction quality,
SlotDiffusion still achieves state-of-the-art LPIPS. Figure 2 presents the qualitative results, where
SAVi and SLATE produce videos with blurry objects and backgrounds. Thanks to the powerful
DM, our model retains the detailed shapes and textures of the objects. Also, our generated object
properties are temporally more consistent. See Appendix E.2 for more qualitative results.

For video segmentation, SlotDiffusion achieves both the best FG-ARI and mIoU. Figure 3 shows
how the segmentation results change with video length, which measures the object tracking perfor-
mance. Despite trained only on video clips of length 3, our model is able to generalize to the entire
videos at test time, outperforming all the baselines consistently. See Appendix E.2 for visualizations.

5 CONCLUSION

In this paper, we propose SlotDiffusion by incorporating diffusion models with object-centric mod-
els. Conditioned on object slots, our LDM-based decoder performs iterative denoising over latent
image features, providing strong learning signal for unsupervised scene decomposition. Experimen-
tal results on both image and video datasets demonstrate that our model can achieve state-of-the-art
segmentation results and slot-to-image reconstruction quality. We discuss the limitations and poten-
tial future directions of this work in Appendix F.
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A MODEL ARCHITECTURE

Figure 4 shows the general pipeline of video Slot Attention models, and compare two existing slot
decoder with our proposed decoder.

(a) General pipeline of video-based Slot Attention models.

(b) Mixture-based CNN decoder.

(c) Transformer-based autoregressive decoder.

(d) Latent diffusion model based decoder.

Figure 4: Illustration of (a) the training pipeline of video Slot Attention model, (b) the mixture-based decoder
used in SAVi (Kipf et al., 2021), (c) the Transformer-based decoder used in STEVE (Singh et al., 2022), and
(d) the LDM-based decoder proposed by us.
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B ADDITIONAL RELATED WORK

Unsupervised object-centric learning from images. Our work is directly related to research that
aim at learning to represent the visual data with a set of feature vectors without explicit supervision.
Earlier attempts starts from synthetic image datasets with well-defined objects (Eslami et al., 2016;
Burgess et al., 2019; Greff et al., 2019; Engelcke et al., 2019; Locatello et al., 2020). They typically
perform iterative inference to extract object-centric features from images, followed by a mixture-
based CNN decoder applied to each slot separately for reconstruction. For example, AIR (Eslami
et al., 2016) uses a patch-based decoder to decode each object locally, and transform them back to
form the original image. MONet (Burgess et al., 2019) and Slot Attention (Locatello et al., 2020)
both adopt the spatial broadcast decoder (Watters et al., 2019) to predict an RGB image and an
objectness mask from each slot, and combine them via alpha masking. Recently, SLATE (Singh
et al., 2021) challenges the traditional design with a Transformer-based decoder, which helps the
model scale to more complex data. Another line of works (Wen et al., 2022; Seitzer et al., 2022)
focus on contrastive representation learning for object discovery without decoding. However, they
are not applicable for generation tasks as they cannot generate images from slots.

Unsupervised object-centric learning from videos. Compared to images, videos provide addi-
tional information such as motion cues. Our work also builds upon recent efforts in decomposing
raw videos into temporally aligned object slots (Kosiorek et al., 2018; van Steenkiste et al., 2018;
Kossen et al., 2019; Lin et al., 2020; Kipf et al., 2021; Zoran et al., 2021). These works usually inte-
grate a dynamics module to model the interactions between objects compared to their image-based
counterparts. For example, STOVE (Kossen et al., 2019) adopts a Graph Neural Network (GNN),
while OAT (Creswell et al., 2021), SAVi (Kipf et al., 2021) and PARTS (Zoran et al., 2021) leverage
the powerful Transformer architecture. However, the limited modeling capacity of their decoders
still prevents them from scaling to more realistic videos. Some works (Elsayed et al., 2022) thus in-
troduce additional supervision such as optical flow and depth. Recently, STEVE (Singh et al., 2022)
pushes the limit of fully unsupervised object-centric learning by using the Transformer decoder
from SLATE. Nevertheless, the autoregressive generation mechanism of Transformer degrades its
generation quality, which we aim to solve in this paper.

Diffusion model. Recently, diffusion models have achieved tremendous progress in generation
tasks, including images (Ho et al., 2020; Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021),
videos (Ho et al., 2022b; Singer et al., 2022; Ho et al., 2022a), and 3D shapes (Poole et al., 2022; Lin
et al., 2022), showing their great ability in sample quality and conditioning. The generative process
of diffusion models is formulated as an iterative denoising procedure with a denoising network,
usually implemented as a U-Net (Ronneberger et al., 2015). However, the memory consumption of
DM scales quadratically with the input resolution due to the use of self-attention layers in the U-Net.
To reduce the training cost, LDM (Rombach et al., 2022) proposes to run the diffusion process in the
latent space of a pre-trained auto-encoder. LDM also introduces a flexible conditioning mechanism
via cross-attention between U-Net feature maps and conditional inputs. In this work, we adopt the
slot-conditioned LDM as our decoder for both better segmentation and reconstruction quality.

C DETAILS ON DIFFUSION MODELS

Diffusion models are probabilistic models that learn a data distribution pθ(X0) by gradually denois-
ing a standard Gaussian distribution, in the form of pθ(X0) =

∫
pθ(X0:T ) dX1:T . Here, X1:T

are intermediate denoising results with the same shape as the clean data X0 ∼ q(X), and θ are
learnable parameters of the denoising U-Net model.

The joint distribution q(X1:T |X0) is called the forward process or diffusion process, which is a fixed
Markov Chain that gradually adds Gaussian noise to X0. The noise is controlled by a pre-defined
variance schedule {βt}Tt=1:

q(X1:T |X0) =

T∏
t=1

q(Xt|Xt−1), q(Xt|Xt−1) = N (Xt|
√

1− βtXt−1, βtI). (6)

Thanks to the nice property of Gaussian distributions, Xt can be sampled directly from X0 in closed
form without adding the noise t times. Let αt = 1− βt and ᾱt =

∏t
s=1 αs, we have:

q(Xt|X0) = N (Xt|
√
ᾱtX0, (1− ᾱt)I) ⇒ Xt =

√
ᾱtX0 +

√
1− ᾱtϵt, where ϵt ∼ N (0, I).

(7)
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We can now train a model to reverse this process and thus generate target data from random noise
XT ∼ N (0, I). The reverse process pθ(X0:T ) is also defined as a Markov Chain with a learned
Gaussian transition:

pθ(X0:T ) = p(XT )

T∏
t=1

pθ(Xt−1|Xt), pθ(Xt−1|Xt) = N (Xt−1|µθ(Xt, t),Σθ(Xt, t)) (8)

In practice, we do not learn the variance and usually set it to Σt = βtI or 1−ᾱt−1

1−ᾱt
βtI since it leads

to unstable training (Ho et al., 2020). Also, instead of learning the mean µθ directly, we learn to
predict the noise ϵt in Equation (6). See Ho et al. (2020) for how we can sample Xt−1 given Xt

and the predicted ϵt at the inference stage.

The training process of diffusion models is thus straightforward given Equation (7). At each training
step, we sample a batch of clean data X0 from the training set, timesteps t uniformly from {1, ..., T},
and random Gaussian noise ϵt ∼ N (0, I). We then create the noisy version of data Xt by applying
Equation (7). A denoising model ϵθ is trained to predict the noise with an MSE loss:

LDM = EX,t,ϵt [||ϵt − ϵθ(Xt, t)||2] (9)

D DETAILED EXPERIMENTAL SETUP

In this section, we detail the datasets, evaluation metrics, baseline methods used in the experiments,
and the implementation of our model.

D.1 DATASETS

CLEVRTex (Karazija et al., 2021). This dataset augments the CLEVR (Johnson et al., 2017)
dataset with more diverse object shapes, materials and textures. The backgrounds in CLEVRTex
also present complex textures compared to the plain gray one in CLEVR. Therefore, this dataset is
visually much more complex than CLEVR. As shown in their paper, only 3 out of 10 benchmarked
unsupervised object-centric models can achieve an mIoU higher than 30%. We train our model on
the training set consisting of 40k images, and test on the test set with 5k samples. We use the same
data pre-processing steps, i.e. first center-crop to 192×192, and then resize to 128×128.

CelebA (Liu et al., 2015). This dataset contains over 200k real-world celebrity images. All images
are mostly occupied by human faces, covering a large variation of poses and backgrounds. This
dataset is more challenging compared to previous synthetic datasets as real-world images typically
have unconstrained background clutters and complicated lighting conditions. We train our model on
the training set with around 160k images, and test on the test split with around 20k images. For data
pre-processing, we simply resize all images to 128×128.

MOVi-D/E (Greff et al., 2022). MOVi-D and MOVi-E are the 2 most challenging versions from
the MOVi benchmark generated using the Kubric simulator. Their videos feature photo-realistic
backgrounds and real-world objects from the Google Scanned Objects (GSO) repository (Downs
et al., 2022), where one or several objects are thrown to the ground to collide with other objects.
Compared to MOVi-D, MOVi-E applies linear camera motion. We follow the official train-test split
to evaluate our model. For data pre-processing, we simply resize all frames to 128×128.

D.2 EVALUATION METRICS

To evaluate the generation quality of SlotDiffusion, we compute the mean squared error (MSE)
of the images reconstructed from the object slots. Following prior works, we scale the images to
[0, 1], and sum the errors over channel and spatial dimensions. As pointed out by Zhang et al. (2018),
MSE does not align well with human perception about visual quality as it favors over-smooth results.
Therefore, we additionally compute the perceptual distance (LPIPS) (Zhang et al., 2018) metric.

To evaluate the scene decomposition results, we compute the FG-ARI and mIoU of the object masks.
FG-ARI is widely used in previous object-centric learning papers, which only consider the fore-
ground objects. As suggested by Engelcke et al. (2019); Karazija et al. (2021), we should also com-
pute the mIoU which evaluates background segmentation. It is worth noting that on video datasets,
we flatten the temporal dimension into spatial dimensions when computing the metrics, thus taking
the temporal consistency of object masks into consideration. Being able to consistently track all the
objects is also an important property of video slot models.
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Dataset CLEVRTex CelebA MOVi-D/E

Number of Slots N 11 4 15
Slot Size Dslot 192 192 192

Slot Attention Iteration 3 3 2

Max Learning Rate 2e-4 2e-4 1e-4
Gradient Clipping 1 None 0.05

Batch Size 64 64 32
Training Epochs 100 50 30

Table 3: Variations in model architectures and training settings on different datasets.

SAVi STEVE SlotDiffusion

Train Memory (GB) 32 51 24
Time (s) 0.57 0.87 0.77

Test Time (min) 0.7 226 7

Table 4: Comparison of model complexity on the MOVi-D/E video datasets. We measure the training memory
consumption, time per training step and generation time of 100 videos at test stage. For training, we report the
default settings (batch size 32 of length-3 video clips, frame resolution 128×128) on NVIDIA A40 GPUs. For
testing, we report the inference time on NVIDIA T4 GPUs.

D.3 BASELINES

We adopt Slot Attention and SAVi as representative models which use a mixture-based CNN de-
coder, and SLATE and STEVE for models with a autoregressive Transformer-based decoder. Since
we augment SlotDiffusion with a stronger ResNet18 encoder compared to the previous stacked CNN
encoder, we also re-train baselines with the same encoder, which achieves better performance than
reported in their papers. We found that using a larger decoder and training longer leads to better
performance, and thus report the baseline results with the best hyper-parameters we discovered.

D.4 IMPLEMENTATION DETAILS OF SLOTDIFFUSION

We use the same VQ-VAE (Razavi et al., 2019) architecture for all datasets, which is adopted from
LDM (Rombach et al., 2022). We use 3 encoder and decoder blocks, resulting in 4x down-sampling
of the feature maps z compared to input images x. We pre-train the VQ-VAE for 100 epochs on
each datasets with a cosine learning rate schedule and fix it during the object-centric model training.

For the object-centric model, we only replace the decoder with LDM (Rombach et al., 2022) com-
pared to Slot Attention on image datasets and SAVi on video datasets. Another difference we made
is to use a modified ResNet18 encoder (Kipf et al., 2021) to extract image features. For the LDM-
based slot decoder, the training target is to predict the noise ϵ added to the features produced by a
pre-trained VQ-VAE. Following prior works, the denoising network ϵθ(zt, t,S) is implemented as
a U-Net (Ronneberger et al., 2015) with global self-attention operation in each block. We use the
same noise schedule {βt}Tt=1 and U-Net hyper-parameters as Rombach et al. (2022). See Table 3
for detailed slot configurations and training settings.

Diffusion model is notoriously slow in doing generation due to the iterative denoising process, where
the diffusion step T is often 1,000. Fortunately, researchers have developed several methods to ac-
celerate this procedure. We employ the DPM-Solver (Lu et al., 2022) which reduce the sampling
steps to 20. Therefore, our reconstruction speed is even faster than models with Transformer de-
coder, as they need to forward their model number of tokens (typically 1,024) times, while we only
need 20 times, and can get better reconstruction quality.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 COMPUTATIONAL REQUIREMENTS

We empirically show the speed and GPU memory requirement at training time, as well as the time
required to reconstruct 100 videos at test time of SAVi, STEVE and SlotDiffusion in Table 4. In-
terestingly, our model requires the least GPU memory during training despite achieving the best
performance. This is because we run the diffusion process at latent space, whose spatial dimension
is only 1/4 of the input resolution. On the other hand, SAVi applies CNN to directly reconstruct
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Figure 5: Qualitative results of video reconstructions on MOVi-D datasets.

the images at original resolution, and STEVE uses Transformer to predict a long sequence of 1,024
tokens. Both of these designs consumes large GPU memory. In terms of training and generation
speed, SlotDiffusion ranks second. SAVi runs extremely fast since it decodes images in one-shot,
while STEVE and our model both need to do iterative sampling. Thanks to the efficient DPM-Solver
sampler, we only require 20 times forward pass, while STEVE requires 1,024 times.

E.2 ADDITIONAL QUALITATIVE RESULTS

Video reconstruction. Figure 5 and Figure 6 show video reconstruction results on MOVi-D and
MOVi-E datasets, respectively. Compared to baselines that produce blurry frames, SlotDiffusion is
able to preserve the local appearances such as textures on the objects and backgrounds. However,
there is still large room for improvement in finer details. For example, in Figure 5 (top), we cannot
reconstruct the texts on the object surfaces. Also, in Figure 6 (bottom), we fail to retain the smooth
round opening of the red object.

Video segmentation. We show the video segmentation results on both video datasets in Figure 7
and Figure 8. As observed in previous work (Singh et al., 2022), MOVi-D is more challenging than
MOVi-E since most of the objects are static, while on MOVi-E the moving camera provides motion
cues. Indeed, the static objects on MOVi-D are usually segmented into multiple slots, while MOVi-E
results show cleaner object masks. Also, SAVi degenerates to stripe patterns on MOVi-D, but is able
to produce meaningful masks on MOVi-E. Compared to STEVE, SlotDiffusion usually has more
consistent tracking results and less object sharing issues, especially on large objects. We also note
that the shown examples of SlotDiffusion on MOVi-D have FG-ARI scores higher than 80%, despite
having low visual quality. This may indicate that FG-ARI metric has been saturated, and we should
use better metrics such as mIoU (Karazija et al., 2021).
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Figure 6: Qualitative results of video reconstructions on MOVi-E datasets.

Figure 7: Video segmentation results on MOVi-D. The moving objects are highlighted with red arrows.

E.3 ABLATION STUDY

We study the effect of the number of diffusion process steps T in our DM-based decoder. We plot
both the reconstruction and segmentation results on two videos datasets in Figure 9. As expected,
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Figure 8: Video segmentation results on MOVi-E, where videos have small linear camera motion.

Figure 9: Ablation study on the number of diffusion steps T of SlotDiffusion. We show the reconstruction
performance and segmentation results on both video datasets.

more denoising steps leads to better generation quality, thus lower MSE and LPIPS. Interestingly,
smaller T results in better segmentation performance. This indicates that there is a trade-off between
the reconstruction and segmentation quality of our model, and we select T = 1000 to strike a good
balance. In the literature of self-supervised representation learning (He et al., 2022; Hua et al.,
2022), it is believed that more difficult pretext tasks usually lead to better learned representations.
Therefore, we hypothesize that a smaller T makes the pretext denoising task harder, resulting in
better object-centric representations.

This observation aligns with one failure case in our experiments. Due to bad initialization, some-
times (1 out of 5 runs) SlotDiffusion degenerates to stripe pattern, where each slot captures a fixed
region of the image instead of tracking an object. Surprisingly, the failed models usually have a much
lower (∼ 40%) reconstruction MSE compared to well-trained models. This raises a question about
intrinsic problems of object-centric models that prevent them from doing good reconstructions.

E.4 FAILED ATTEMPTS

Here, we record some failed model variants we tried.

Image-space diffusion model. At the early stage of this work, we adopt an image-space DM as the
slot decoder without the VQ-VAE tokenizer. This works well with low resolution inputs (64×64).
However, when we increase the resolution to 128×128, we observe color shifting artifacts which
is a common issue among high resolution DMs (Saharia et al., 2022b;a). Switching to LDM-based
decoder solves this problem, as the VQ-VAE decoder always map latent codes to images with natural
color statistics. In addition, since LDM consumes less memory, we can use a larger U-Net as the
denoiser, which further improves the performance.

Prediction target of the diffusion model. By default, our DM adopts the traditional noise pre-
diction (ϵ) target. Recent works in DM propose two other formulations, namely, data prediction
(x0) (Ramesh et al., 2022) and velocity prediction (v) (Ho et al., 2022a), and claim to have better
generation quality. We tried both targets in SlotDiffusion, but both model variants degenerate to the
stripe pattern solution (similar to SAVi results in Figure 7) under multiple random seeds.
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F LIMITATIONS AND FUTURE WORKS

Limitations. The goal of SlotDiffusion is to improve the generation quality of object-centric models.
Currently, we only evaluate our model in terms of slot-to-image reconstruction, which is not a typical
generation task. Also, although we improve the LPIPS by a sizeable margin, our MSE results are not
very good. This may because MSE favors blurry results generated by baselines. Finally, as analyzed
in Section E.2, the modeling capability of fine local details can still be improved.

Future Works. Recent work (Seitzer et al., 2022) has shown the power of contrastive pre-trained
representations in unsupervised object discovery. We may add the contrastive loss to our framework
to better improve the learned features. Also, we want to test our model’s scene decomposition
capacity on more video datasets, especially the real-world ones proposed by Singh et al. (2022). In
addition, we plan to integrate SlotDiffusion with object-centric dynamics model (Wu et al., 2022)
to tackle the video prediction task, where we can evaluate the performance gain brought by the
improved slot decoder. Finally, to examine the quality of learned slots, we can apply our object
features to downstream reasoning tasks such as VQA (Yi et al., 2019; Bear et al., 2021). Overall,
we believe SlotDiffusion provides a better trade-off between generation quality and segmentation
performance by introducing diffusion model to the field of object-centric learning, which we see as
a promising direction.
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