
NeSy-GeMs workshop at ICLR 2023

VAEL: BRIDGING VARIATIONAL AUTOENCODERS AND
PROBABILISTIC LOGIC PROGRAMMING

Eleonora Misino
Department of Computer Science and Engineering
University of Bologna, Italy
eleonora.misino2@unibo.it

Giuseppe Marra, Emanuele Sansone
Department of Computer Science
KU Leuven, Belgium
{first}.{last}@kuleuven.be

ABSTRACT

We present VAEL, a neuro-symbolic generative model integrating variational
autoencoders (VAE) with the reasoning capabilities of probabilistic logic (L) pro-
gramming. Besides standard latent subsymbolic variables, our model exploits a
probabilistic logic program to define a further structured representation, which is
used for logical reasoning. The entire process is end-to-end differentiable. Once
trained, VAEL can solve new unseen generation tasks by (i) leveraging the pre-
viously acquired knowledge encoded in the neural component and (ii) exploiting
new logical programs on the structured latent space. Our experiments provide
support on the benefits of this neuro-symbolic integration both in terms of task
generalization and data efficiency. To the best of our knowledge, this work is the
first to propose a general-purpose end-to-end framework integrating probabilistic
logic programming into a deep generative model.

1 INTRODUCTION

Neuro-symbolic learning has gained tremendous attention in the last few years (Besold et al., 2017;
De Raedt et al., 2020; Kautz, 2020; Bengio & Marcus, 2020) as such integration has the potential of
leading to a new era of intelligent solutions, enabling the integration of deep learning and reasoning
strategies (e.g. logic-based or expert systems). While a lot of effort has been devoted to devising neuro-
symbolic methods in the discriminative setting (Manhaeve et al., 2018; Yi et al., 2018; Minervini et al.,
2020), less attention has been paid to the generative counterpart. An ideal generative neuro-symbolic
framework should be able to encode the available small amount of training data into an expressive
symbolic representation and to exploit complex forms of high level reasoning on such representation
to generate new data samples. This is far from the actual state-of-the-art, where neuro-symbolic
methods (Jiang & Ahn, 2020; Feinman & Lake, 2020; Gothoskar et al., 2021) have been mostly
applied on generative tasks requiring only spatial-reasoning. As a motivation for this work, consider a
task where a single image of multiple handwritten numbers is labeled with their sum. Suppose that we
want to generate new images not only given their addition, but also given their multiplication, power,
etc. Common generative approaches, like VAE-based models, have a strong connection between the
latent representation and the label of the training task (i.e. the addition) have to be retrained on new
data (Kingma et al., 2014; Joy et al., 2021). Consequently, when considering new generation tasks
that go beyond the simple addition, they have to be retrained on new data.

In our work Misino et al. (2022), we tackle the problem by providing a novel generative neuro-
symbolic solution, named VAEL. In VAEL, the latent representation is not directly linked to the
label of the task, but to a set of newly introduced symbols, i.e. logical expressions. Starting from
these expressions, we use a probabilistic logic program to deduce the label. Importantly, the neural
component only needs to learn a mapping from the raw data to this new symbolic representation. In
this way, the model only weakly depends on the supervised information and can generalize to new
generation tasks involving the same set of symbols. Moreover, the reasoning component offers a
strong inductive bias, which enables a more data efficient learning.

1

NeSy-GeMs workshop at ICLR 2023

2 THE VAEL MODEL

Figure 1: VAEL graph-
ical model.

We propose a probabilistic graphical model which enables to unify
VAEs with Probabilistic Logic Programming. Specifically, we use
ProbLog (De Raedt et al., 2007), (see Appendix A), which lifts logic
programs to probabilistic logic programs through the introduction of prob-
abilistic facts pi :: fi, i.e. logical fact that are true with probability pi. A
ProbLog program defines a probability distribution over possible worlds
P (wF ; p), where a possible world is an assignment of truth values to the
probabilistic facts F and to the facts that can be derived from F using the
logic program. The graphical model of VAEL is displayed in Figure 1,
where black arrows refer to the generative model, whereas blue dashed
arrows correspond to the inference counterpart. The model consists of four
core variables. x ∈ RH×W×C represents the image we want to generate,
while y ∈ {0, 1}K represents a label, i.e. a symbolic information character-
izing the image. The latent variable is split into a symbolic component zsym ∈ RN and a subsymbolic
component z ∈ RM .

Generative model. The generative distribution of VAEL is factorized in the following way:

pθ(x, y, z) = p(x|z)p(y|zsym)p(z) (1)

where z = [zsym, z] and θ are the parameters of the generative model. p(z) is a standard Gaussian
distribution, while p(y|zsym) is the success distribution of the label of the ProbLog program T .
p(x|z) is a Laplace distribution with mean value µ and identity covariance. Here, µ is a neural
network decoder whose inputs are z and a possible ProbLog world ωF ∼ P (ωF ;MLP (zsym)).
Importantly, VAEL does not rely on a one-to-one mapping between y and zsym, rather it exploits
a probabilistic logic program to link them, viz. p(y|zsym). Indeed, the probabilistic facts are used
by the ProbLog program to compute the actual labels y and they can encode a more meaningful
symbolic representation of the image than y. Additional technical details about the generative process
and the graphical model are available in Appendix B.

Inference model. We amortise inference by using an approximate posterior distribution qϕ(z|x, y)
with parameters ϕ. Furthermore, we assume that z and y are conditionally independent given x,
thus obtaining qϕ(z|x, y) = qϕ(z|x)1. This allows us to decouple the latent representation from the
training task. Conversely, the other VAE frameworks do not exploit this assumption and have a latent
representation that is dependent on the training task.

The overall VAEL model (including the inference and the generative components) is shown in
Figure 2. We provide an example to showcase the inference and the generative parts of VAEL.

Example 1 Consider a dataset composed of images of pairs of digits labelled with their sum, for
example x = labelled as y = 3. In Figure 2, we show the inference and generative components
of VAEL on this task. First, the encoder (left) computes an approximated posterior of the latent
variables z from the image x. The latent variables are split into two components: (i) a subsymbolic z,
which is meant to encode subsymbolic properties of the image (e.g. writing style); and a symbolic
zsym, which is meant to encode the symbolic properties (i.e. the digits). A MLP is used to map the
real variables zsym into the probabilities pij of the facts in the following ProbLog program.

p_10::digit(X,first,0); ...; p_19::digit(X,first,9).
p_20::digit(X,second,0); ...; p_29::digit(X,second,9).
addition(X,Y) :- digit(X,first, Z1), digit(X,second, Z2), Y is Z1 + Z2.

which states that an image X is classified as Y if the first digit is classified as Z1, the second as Z2
and they satisfy “Y is Z1+ Z2”. The program is used to compute the label y and a possible world, i.e.
the identity of the two digits. Finally, a decoder (right) takes both the latent vector z and the possible
world from ProbLog to reconstruct the image x̃.

1We use a Gaussian distribution with a mean parameterized by the encoder network and identity covariance.

2

NeSy-GeMs workshop at ICLR 2023

Objective function. The objective function of VAEL computes an evidence lower bound (ELBO)
on the log likelihood of pair (x, y), namely:

L(θ, ϕ) = LREC(θ, ϕ) + LQ(θ, ϕ)−DKL[qϕ(z|x)||p(z)]] (2)

where

LREC(θ, ϕ) = Ez∼qϕ(z|x)[log(p(x|z)], LQ(θ, ϕ) = Ezsym∼qϕ(zsym|x))[log(p(y|zsym))]].

The ELBO is used to train VAEL in an end-to-end differentiable manner, thanks to the Reparametriza-
tion Trick (Kingma & Welling, 2014) at the level of the encoder qϕ(z|x) and the differentiability of
the ProbLog inference, which is used to compute the success probability of a query and sample a
world. In Appendix C, we report VAEL training algorithm (Algorithm 1) along with further details
on the training procedure.

Figure 2: The VAEL model on the MNIST addition generative task.

3 EXPERIMENTS

We test our model on four tasks: 1. classification, i.e., predicting the correct label given the input
image; 2. joint generation, i.e., generating both the image and the label; 3. conditional generation, i.e.,
generating the image given the label; 4. out-of-task generalization, i.e., generating the image given
the label of a different task than the training one. In fact, once trained VAEL on a specific symbolic
task (e.g., the addition of two digits), we can generalize to any novel task that involves reasoning with
the same set of probabilistic facts by simply changing the ProbLog program accordingly (indeed, we
can generalize to the multiplication of two integers).

When possible, we compare VAEL against the state-of-the-art CCVAE (Joy et al., 2021) We evaluate
the models by relying on a reconstruction loss (mREC) in terms of data log-likelihood and two
accuracies, predictive accuracy (mCLASS), i.e. the accuracy on the label y, and generative accuracy
(mGEN), i.e. the accuracy of a pre-trained MNIST classifier to identify the generated digits.

We created two different datasets to validate our approach. The first dataset, named 2digit MNIST ,
contains 64.400 images of two digits taken from the MNIST dataset (LeCun et al., 1998). Each
image is labelled with the sum of the two digits. The combinatorial nature of the dataset makes any
task defined on it harder than its single-digit counterpart. The second dataset, referred to as 2level
Mario, consists of 6, 720 images of two consequent states of a 3× 3 grid world where an agent can
move by one single step (diagonals excluded). Each image in the 2level Mario dataset is labelled with
the move performed by the agent. Both datasets present a compositional scene that showcases the
advantages of using a neuro-symbolic approach to logically reasoning upon the scene components.
Moreover, the compositional nature allows us to design novel tasks that imply arbitrarily complex
forms of reasoning among the scene elements.

Main results. As shown in Table 1, CCVAE and VAEL achieve comparable predictive accu-
racy in 2level Mario dataset (classification). However, VAEL generalizes better than CCVAE
in 2digit MNIST dataset. The reason behind this performance gap is due to the fact that the
addition task is combinatorial in nature and CCVAE would require a larger number of train-
ing samples in order to solve it. We further investigate this aspect in the Data Efficiency ex-
periment. Furthermore, VAEL outperforms CCVAE in terms of both reconstructive and gen-
erative ability (joint-generation). The difference in performance between the models lies in

3

NeSy-GeMs workshop at ICLR 2023

Table 1: Reconstructive, predictive and generative ability of VAEL and CCVAE. We use repeated
trials to evaluate both the models on a test set of 10K images for 2digit MNIST dataset and 1344
images for 2level Mario dataset.

2digit MNIST 2level Mario
mREC(↓) mCLASS(↑) mGEN (↑) mREC(↓) mCLASS(↑) mGEN (↑)

CCVAE 1549± 2 0.53± 0.01 0.51± 0.02 43461± 209 1.00± 0.00 0.00± 0.00
VAEL 1542± 3 0.85± 0.02 0.79± 0.04 42734± 246 0.98± 0.06 0.81± 0.30

the fact that for each label there are many possible correct images. For example, in the 2level
Mario dataset, there are 6 possible pairs of agent’s positions that correspond to the label left.

Figure 3: Examples of VAEL task
generalization for 2digit MNIST
dataset.

Our probabilistic logic program explicitly encodes the digits
value or the single agent’s positions in its probabilistic facts,
and uses the variable zsym to compute their probabilities. On
the contrary, CCVAE is not able to learn the proper mapping
from the digits value or the agent’s positions to the label, but it
can learn to encode only the label in the latent space zsym. We
define several novel tasks to evaluate the task generative ability
of VAEL (out-of-task generalization). For example, for 2digit
MNIST dataset, we introduce the multiplication, subtraction
and power between two digits. As shown in Figure 3, VAEL is
able to conditionally generate pairs of numbers consistent with
the the result y of the corresponding mathematical operation
between the first and second digit. To the best of our knowledge,
such a level of task generalization cannot be achieved by any
existing VAE framework. On the contrary, in VAEL, we can
generalize by simply substituting the ProbLog program used
for the training task with the program for the desired target task, without re-training the model.
Additional results, included conditional generation, can be found in Appendix F.

Data Efficiency. Here, we want to verify whether the use of a logic-based prior helps the learning
in contexts characterized by data scarcity. To this goal, we define different training splits of increasing
size for the addition task of 2digit MNIST dataset. In particular, the different splits range from 10 up
to 100 images per pair of digits. The results (Figure 4) show that VAEL outperforms the baseline for
all the tested sizes. In fact, with only 10 images per pair, VAEL already performs better than CCVAE
trained with 100 images per pair. The reason behind this disparity is that the logic-based prior helps
the neural model in properly structuring the latent representation, so that one part can easily focus
on recognizing individual digits and the other on capturing the remaining information in the scene.
Conversely, CCVAE needs to learn how to correctly model very different pairs that sum up to the
same value. We further investigated the gap between CCVAE and VAEL in Appendix E.

101 102

0

0.2

0.4

0.6

0.8

Training Size

D
is

cr
im

in
at

iv
e

A
cc

ur
ac

y

VAEL
CCVAE

101 102

0

0.2

0.4

0.6

0.8

Training Size

G
en

er
at

iv
e

A
cc

ur
ac

y

VAEL
CCVAE

101 102
1,500

1,550

1,600

1,650

1,700

Training Size

R
ec

on
st

ru
ct

io
n

L
os

s

VAEL
CCVAE

Figure 4: Discriminative, generative and reconstructive ability of VAEL (blue) and CCVAE (red)
trained in contexts characterized by data scarcity. Both the models are evaluated on the same test set.
The training size refers to the number of samples per pair of digits seen during the training.

4

NeSy-GeMs workshop at ICLR 2023

ACKNOWLEDGEMENTS

GM is funded by the Research Foundation-Flanders (FWO-Vlaanderen, GA No 1239422N). This
research is funded by TAILOR, a project funded by EU Horizon 2020 research and innovation pro-
gramme under GA No 952215. ES is partially funded by the KU Leuven Research Fund (C14/18/062)
and the Flemish Government (AI Research Program).

REFERENCES

Yoshua Bengio and Gary Marcus. Ai debate. https://
montrealartificialintelligence.com/aidebate/, 2020.

Tarek R Besold, Artur d’Avila Garcez, Sebastian Bader, Howard Bowman, Pedro Domingos, Pas-
cal Hitzler, Kai-Uwe Kühnberger, Luis C Lamb, Daniel Lowd, Priscila Machado Vieira Lima,
et al. Neural-symbolic learning and reasoning: A survey and interpretation. arXiv preprint
arXiv:1711.03902, 2017.

Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. Problog: A probabilistic prolog and its
application in link discovery. In IJCAI, volume 7, pp. 2462–2467, 2007.

Luc De Raedt, Sebastijan Dumančić, Robin Manhaeve, and Giuseppe Marra. From statistical
relational to neuro-symbolic artificial intelligence. In IJCAI, 2020.

Reuben Feinman and Brenden M. Lake. Generating New Concepts with Hybrid Neuro-Symbolic
Models. In CogSci, 2020.

Nishad Gothoskar, Marco Cusumano-Towner, Ben Zinberg, Matin Ghavamizadeh, Falk Pollok,
Austin Garrett, Joshua B. Tenenbaum, Dan Gutfreund, and Vikash K. Mansinghka. 3DP3: 3D
Scene Perception via Probabilistic Programming. In NeurIPS, 2021.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical Reparameterization with Gumbel-Softmax. In
ICLR, 2017.

Jindong Jiang and Sungjin Ahn. Generative Neurosymbolic Machines. In NeurIPS, 2020.

Tom Joy, Sebastian M. Schmon, Philip H. S. Torr, Siddharth Narayanaswamy, and Tom Rainforth.
Capturing Label Characteristics in VAEs. In ICLR, 2021.

Henry Kautz. The third ai summer. https://roc-hci.com/announcements/
the-third-ai-summer/, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In ICLR, 2015.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In ICLR, 2014.

Diederik P. Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised
Learning with Deep Generative Models. In NeurIPS, pp. 3581–3589, 2014.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. IEEE, 86(11):2278–2324, 1998.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
DeepProbLog: Neural Probabilistic Logic Programming. In NeurIPS, pp. 3753–3763, 2018.

Pasquale Minervini, Sebastian Riedel, Pontus Stenetorp, Edward Grefenstette, and Tim Rocktäschel.
Learning reasoning strategies in end-to-end differentiable proving. In ICML, 2020.

Eleonora Misino, Giuseppe Marra, and Emanuele Sansone. VAEL: Bridging variational autoencoders
and probabilistic logic programming. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=0xbP4W7rdJW.

Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Joshua B Tenenbaum.
Neural-symbolic vqa: Disentangling reasoning from vision and language understanding. In
NeurIPS, 2018.

5

https://montrealartificialintelligence.com/aidebate/
https://montrealartificialintelligence.com/aidebate/
https://roc-hci.com/announcements/the-third-ai-summer/
https://roc-hci.com/announcements/the-third-ai-summer/
https://openreview.net/forum?id=0xbP4W7rdJW
https://openreview.net/forum?id=0xbP4W7rdJW

NeSy-GeMs workshop at ICLR 2023

A PROBABILISTIC LOGIC PROGRAMMING

A logic program is a set of definite clauses, i.e. expressions of the form h← b1 ∧ ... ∧ bn, where h is
the head literal or conclusion, while the bi are body literals or conditions. Definite clauses can be
seen as computational rules: IF all the body literals are true THEN the head literal is true. Definite
clauses with no conditions (n = 0) are facts. In first-order logic programs, literals take the form
a(t1, ..., tm), with a a predicate of arity m and ti are the terms, that is constants, variables or functors
(i.e. functions of other terms). Grounding is the process of substituting all the variables in an atom or
a clause with constants.

ProbLog De Raedt et al. (2007) lifts logic programs to probabilistic logic programs through the
introduction of probabilistic facts. Whereas a fact in a logic program is deterministically true, a
probabilistic fact is of the form pi :: fi where fi is a logical fact and pi is a probability. In ProbLog,
each ground instance of a probabilistic fact fi corresponds to an independent Boolean random
variable that is true with probability pi and false with probability 1− pi. Mutually exclusive facts can
be defined through annotated disjunctions p0 :: f0; ... ; pn :: fn. with

∑
i pi = 1. Let us denote with

F the set of all ground instances of probabilistic facts and with p their corresponding probabilities.
Every subset F ⊆ F defines a possible world wF obtained by adding to F all the atoms that can be
derived from F using the logic program. The probability P (wF ; p) of such a possible world wF is
given by the product of the probabilities of the truth values of the probabilistic facts; i.e:

P (wF ; p) =
∏
fi∈F

pi
∏

fi∈F\F

(1− pi) (3)

Two inference tasks on these probabilities are of interest for this paper.

Success: The probability of a query atom y, or formula, also called success probability of y, is the
sum of the probabilities of all worlds where y is True, i.e.,

P (y; p) =
∑

F⊆F :wF |=y

P (wF ; p) (4)

Sample with evidence: Given a set of atoms or formulas E, the evidence, the probability of a world
given evidence is:

P (wF |E; p) =
1

Z

{
P (wF ; p) if wF |= E

0 otherwise
(5)

where Z is a normalization constant. Sampling from this distribution provides only worlds that are
coherent with the given evidence.

Example 2 (Addition of two digits) Let us consider a setting where images contains two digits that
can only be 0 or 1. Consider the following two logical predicates: digit(img, I, Y) states that a
given image img has a certain digit Y in position I, while add(img, z) states that the digits in img
sum to a certain value z.

We can encode the digit addition task in the following program T :

p1::digit(img,1,0); p2::digit(img,1,1).
p3::digit(img,2,0); p4::digit(img,2,1).

add(img,Z) :- digit(img,1,Y1),
digit(img,2,Y2),
Z is Y1 + Y2.

In this program T , the set of ground facts F is

{digit(img, 1, 0), digit(img, 1, 1), digit(img, 2, 0), digit(img, 2, 1)}.

The set of probabilities p is p = [p1, p2, p3, p4]. The ProbLog program T defines a probability
distribution over the possible worlds and it is parameterized by p, i.e. P (ωF ; p). Then, we can ask
ProbLog to compute the success probability of a query using Equation 4, e.g. P (add(img, 1)); or
sample a possible world coherent with some evidence add(img, 2) using Equation 5, e.g. ωF =
{digit(img, 1, 1), digit(img, 2, 1)}.

6

NeSy-GeMs workshop at ICLR 2023

B ELBO DERIVATION

To derive the ELBO defined in (2) we start from the maximization of the log-likelihood of the input
image x and the class y, namely

log(p(x, y)) = log

(∫
p(x, y|z)dz

)
. (6)

Recalling the generative network factorization (1), we can write

log(p(x, y)) = log

(∫
pθ(x|z, zsym)pθ(y|zsym)p(z)p(zsym)dzdzsym

)
(7)

Then, by introducing the variational approximation qϕ(z|x) to the intractable posterior pθ(z|x) and
applying the factorization, we get

log(p(x, y)) = log

(∫
qϕ(z|x)qϕ(zsym|x)
qϕ(z|x)qϕ(zsym|x)

pθ(x|z, zsym)pθ(y|zsym)p(z)p(zsym)dzdzsym

)
. (8)

We now apply the Jensen’s inequality to equation (8) and we obtain the lower bound for the log-
likelihood of x and y given by∫

qϕ(z|x)qϕ(zsym|x) log
(
pθ(x|z, zsym)pθ(y|zsym)

p(z)p(zsym)

qϕ(z|x)qϕ(zsym|x)
dzdzsym

)
. (9)

Finally, by relying on the linearity of expectation and on logarithm properties, we can rewrite equation
(9) as

Ez∼qϕ(z|x) [log(pθ(x|z))] + Ezsym∼qϕ(zsym|x) [log(pθ(y|zsym))] + Ez∼qϕ(z|x)

[
log

(
p(z)

qϕ(z|x)

)]
.

The last term is the negative Kullback-Leibler divergence between the variational approximation
qϕ(z|x) and the prior p(z). This leads us to the ELBO of equation (2), that is

log(p(x, y)) ≥ Ez∼qϕ(z|x) [log(pθ(x|z))] + Ezsym∼qϕ(zsym|x) [log(pθ(y|zsym))]−DKL[qϕ(z|x)||p(z)]
:= L(θ, ϕ).

In VAEL graphical model (Figure 5), we omit ωF since we exploit an equivalence relation between
the probabilistic graphical models (PGMs) shown in Figure 5. Indeed, the objective for the PGM
where ωF is explicit is equivalent to the one reported in the paper. This is supported by the derivation
of log p(x, y) (Eq. 10), which is equivalent to Eq. (2) in our paper, where the expectation over ωF is
estimated through Gumbel-Softmax.

log p(x, y) = log

∫
z,zsym,ωF

q(z, zsym|x)p(x|z, ωF)p(y|zsym)p(ωF |zsym, y)
p(z, zsym)

q(z, zsym|x)

≥
∫
z,zsym,ωF

q(z, zsym|x)p(ωF |zsym, y) log p(x|z, ωF)p(y|zsym)
p(z, zsym)

q(z, zsym|x)
= Ez,zsym,ωF

[log p(x|z, ωF)] + Ezsym [log p(y|zsym)]−KL[q(z, zsym|x)∥p(z, zsym)]
(10)

Figure 5: PGM with (left) and without (right) ProbLog box.

7

NeSy-GeMs workshop at ICLR 2023

C ELBO ESTIMATION AND LEARNING

We estimate the ELBO and its gradients w.r.t. the model parameters using standard Monte Carlo
estimates of expectations Kingma & Welling (2014). Since both qϕ(z|x) and p(z) are chosen to
be Gaussian distributions, the Kullback-Leibler divergence in (2) can be integrated analytically by
relying on its closed form. Thus, only the expected reconstruction and query errors LREC(θ, ϕ) and
LQ(θ, ϕ) require estimation by sampling.
We can therefore define the ELBO estimator as

L(θ, ϕ) ≈ L̃(θ, ϕ; ϵ) = L̃REC(θ, ϕ; ϵ) + L̃Q(θ, ϕ; ϵ)−DKL[qϕ(z|x)||p(z)]. (11)
The estimators of LREC and LQ can be written as

L̃REC(θ, ϕ; ϵ) =
1

N

N∑
n=1

(log(pθ(x|ẑ(n)))) (12)

L̃Q(θ, ϕ; ϵ) =
1

N

N∑
n=1

(log(pθ(y|ẑ(n)sym))) (13)

where
ẑ(n) = {ẑ(n), ẑ(n)sym} := µ(x) + σ(x)ϵ(n),

ϵ(n) ∼ N (0, 1).

During the training, we aim at maximizing L(θ, ϕ) with respect to both the encoder and the decoder
parameters, we therefore need to compute the gradient w.r.t. θ and ϕ. Since any sampling operation
prevents back-propagation, we need to reparametrize the two sampled variables z and ω. Due to their
nature, we use the well-known Reparametrization Trick Kingma & Welling (2014) for the Gaussian
z, while we exploit the Categorical Reparametrization with Gumbel-Softmax Jang et al. (2017) for
the discrete variable ω corresponding to the sampled possible world.
In particular, by defining ω as the one-hot encoding of the possible worlds, we have

ω̂i =
exp((log πi + ĝi)/λ∑J

j=1 exp((log πj + ĝj)/λ)
, with ĝi ∼ Gumbel(0, 1) (14)

where J is the number of possible worlds (e.g. all the possible pairs of digits), and πi depends on
zisym, which is reparametrized with the Gaussian Reparametrization Trick. In Algorithm 1 we report
VAEL training algorithm .

Algorithm 1: VAEL Training.
Data: Set of images X
θ, ϕ← Initialization of paramters
repeat

Forward Phase
x← Training sample
z = [z, zsym] ∼ q(z | x)
p = MLP (zsym)
ωF ∼ P (ωF ; p)
y ∼ P (y; p)
x̃ ∼ p(x|z, ωF)

Backward Phase
g← ∇θ,ϕL(θ, ϕ)
θ, ϕ← Update parameters using gradients g

until convergence of parameters (θ, ϕ);

D IMPLEMENTATION DETAILS

D.1 VAEL

In Tables 2 and 3 we report the architectures of VAEL for 2digit MNIST and Mario dataset. For
both the datasets we performed a model selection by minimizing the objective function computed

8

NeSy-GeMs workshop at ICLR 2023

on a validation set of 12, 000 samples for 2digit MNIST and 2, 016 samples for Mario. In all the
experiments we trained the model with Adam Kingma & Ba (2015). The explored hyper-parameters
values are reported in Section D.4.

For 2digit MNIST, the resulting best configuration is: latent space z ∈ RM , zsym ∈ RN with
dimension M = 8 and N = 15; weights 0.1, 1 × 10−5 and 1.0 for the reconstruction, Kullback-
Leibler and classification term of the ELBO respectively; learning rate 1× 10−3.

For Mario, we obtain: latent space z ∈ RM , zsym ∈ RN with dimension M = 30 and N = 18;
weights 1× 101, 1× 101 and 1× 104 for the reconstruction, Kullback-Leibler and classification term
of the ELBO respectively; learning rate 1× 10−4.

Table 2: VAEL architectures for 2digit MNIST dataset.

Encoder Decoder
Input 28 × 56× 1 channel image Input ∈ RM+20

64 × 1 × 4 × 4 Conv2d stride 2 & ReLU (M+20) × 256 Linear layer
128 × 64 × 4 × 4 Conv2d stride 2 & ReLU 256 × 128 × 5 × 4 ConvTranspose2d stride 2 & ReLU
256 × 128 × 4 × 4 Conv2d stride 2 &ReLU 128 × 64 × 4 × 4 ConvTranspose2d stride 2 & ReLU

256 × 2 (M+N) Linear layer 1 × 64 × 4 × 4 ConvTranspose2d stride 2 & Sigmoid

MLP & ProbLog
Input ∈ RN

N × 20 Linear layer & ReLU
20× 20 Linear layer

ProbLog (IN dim: 20, OUT dim: 100)

Table 3: VAEL architectures for Mario dataset.

Encoder Decoder
Input 200 × 100 × 3 channel image Input ∈ RM+9

64 × 3 × 5 × 5 Conv2d stride 2 & SELU (M+9) × 512 Linear layer
128 × 64 × 5 × 5 Conv2d stride 2 & SELU 512 × 256 × 5 × 5 ConvTranspose2d stride 2 & SELU
256 × 128 × 5 × 5 Conv2d stride 2 & SELU 256 × 128 × 5 × 5 ConvTranspose2d stride 2 & SELU
512 × 256 × 5 × 5 Conv2d stride 2 & SELU 128 × 64 × 5 × 5 ConvTranspose2d stride 2 & SELU

512 × 2 (M+9) Linear layer 3 × 64 × 5 × 5 ConvTranspose2d stride 2 & Sigmoid

MLP & ProbLog
Input ∈ RN

N × 20 Linear layer & ReLU
20× 9 Linear layer

ProbLog (IN dim: 18, OUT dim: 24)

D.2 CCVAE

In the original paper Joy et al. (2021), there was a direct supervision on each single element of the
latent space. To preserve the same type of supervision in our two digits addition task, where the
supervision is on the sum and not directly on the single digits, we slightly modify the encoder and
decoder mapping functions of CCVAE. By doing so, we ensure the correctness of the approach
without changing the graphical model. The original encoder function learns from the input both the
mean µ and the variance σ of the latent space distribution, while the decoder gets in input the latent
representation z = {zsym, z} (please refer to the original paper for more details Joy et al. (2021)). In
our modified version, the encoder only learns the variance, while the mean is set to be equal to the
image label µ = y, and the decoder gets in input the label directly z∗ := {y, z}.
In Tables 4 and 5 we report the architectures of CCVAE for 2digit MNIST and Mario dataset. For
both the datasets we performed a model selection by minimizing the objective function computed
on a validation set of 12, 000 samples for 2digit MNIST and 2, 016 samples for Mario. In all the
experiments we trained the model with Adam Kingma & Ba (2015). The explored hyper-parameters
values are reported in Section D.4.

9

NeSy-GeMs workshop at ICLR 2023

For 2digit MNIST, the resulting best configuration is: latent space zsym ∈ RN with dimension equal
to the number of classes N = 19 (due to the one-to-one mapping between zsym and the label y);
latent space z ∈ RM with dimension M = 8, model objective reconstruction term with weight 0.05,
while the other ELBO terms with unitary weights; learning rate 1× 10−4.

For Mario, we obtain: latent space zsym ∈ RN with dimension equal to the number of classes
N = 4; latent space z ∈ RM with dimension M = 300, model objective Kullback-Leibler term and
classification term with weight 1× 104 and 1× 103 respectively, while the other ELBO terms with
unitary weights; learning rate 1× 10−4.

Table 4: CCVAE architectures for 2digit MNIST dataset.

Encoder Decoder
Input 28 × 56 × 1 channel image Input ∈ RM+N

64 × 1 × 4 × 4 Conv2d stride 2 & ReLU (M+N) × 256 Linear layer
128 × 64 × 4 × 4 Conv2d stride 2 & ReLU 256 × 128 × 5 × 4 ConvTranspose2d stride 2 & ReLU
256 × 128 × 4 × 4 Conv2d stride 2 &ReLU 128 × 64 × 4 × 4 ConvTranspose2d stride 2 & ReLU

256 × 2 (M+N) Linear layer 1 × 64 × 4 × 4 ConvTranspose2d stride 2 & Sigmoid

Table 5: CCVAE architectures for Mario dataset.

Encoder Decoder
Input 200 × 100 × 3 channel image Input ∈ RM+N

64 × 3 × 5 × 5 Conv2d stride 2 & SELU (M+N) × 512 Linear layer
128 × 64 × 5 × 5 Conv2d stride 2 & SELU 512 × 256 × 5 × 5 ConvTranspose2d stride 2 & SELU
256 × 128 × 5 × 5 Conv2d stride 2 &SELU 256 × 128 × 5 × 5 ConvTranspose2d stride 2 & SELU
512 × 256 × 5 × 5 Conv2d stride 2 &SELU 128 × 64 × 5 × 5 ConvTranspose2d stride 2 & SELU

512 × 2 (M+N) Linear layer 3 × 64 × 5 × 5 ConvTranspose2d stride 2 & Sigmoid

D.3 CLASSIFIERS

In Table 6 we report the architecture of the classifier used to measure the generative ability of VAEL
and CCVAE for 2digit MNIST dataset. We trained the classifier on 60, 000 MNIST images LeCun
et al. (1998) for 15 epochs with SGD with a learning rate of 1 × 10−2 and a momentum of 0.5,
achieving 0.97 accuracy on the test set.

Table 6

MNIST classifier (2digit MNIST)
Input 28× 28× 1 channel image
Linear layer 784× 128 & ReLU
Linear layer 128× 64 & ReLU
Linear layer 64× 10 & LogSoftmax

In Table 7 we report the architecture of the classifier used to measure the generative ability of VAEL
and CCVAE for Mario dataset. We trained the classifier on 9, 140 single state images of Mario
dataset for 10 epochs with Adam Kingma & Ba (2015) optimizer with a learning rate of 1× 10−4,
achieving 1.0 accuracy on the test set.

D.4 OPTIMIZATION

Experiments are conducted on a single Nvidia GeForce 2080ti 11 GB. Training consumed ∼ 2GB
for 2digit MNIST dataset and ∼ 2.8GB for Mario dataset, taking around 1 hour and 15 minutes to
complete 100 epochs for 2digit MNIST and 1 hour and 30 minutes to complete 100 epochs for Mario
dataset. As introduced in the previous sections, we performed a model selection based on ELBO
minimization for both the model.

In the following bullet lists, lr refers to the learning rate, z, zsym refer to the latent vectors dimensions,
WREC ,WKL,WQ refer to the weights of LREC ,DKL,LQ terms of VAEL objective function, and

10

NeSy-GeMs workshop at ICLR 2023

Table 7

MNIST classifier (Mario)
Input 100× 100× 3 channels image
Conv layer 5× 5× 32 & SELU
Conv layer 5× 5× 64 & SELU
Conv layer 5× 5× 128 & SELU
Linear layer 2048× 9

WREC ,WKL,Wq(y|zsym),Wq(y|x) refer to the corresponding terms of CCVAE objective function
(please refer to the original paper for more details Joy et al. (2021)).

For 2digit MNIST we explore the following values; we repeat the model training 5 times for each
configuration.

• VAEL

– z ∈ {8, 9, 10}
– zsym ∈ {15, 19}
– lr ∈ {0.0001, 0.001}
– WREC ∈ {0.0001, 0.001, 0.01, 0.1, 1, 10, 100}
– WKL ∈ {0.00001, 0.0001, 0.001}
– WQ ∈ {1, 5}

• CCVAE

– zsym ∈ {8, 10, 15, 20, 30}
– lr ∈ {0.00001, 0.0001}
– WKL ∈ {0.0001, 0.001, 0.01, 0.1, 1, 10, 100}
– WREC ∈ {0.01, 0.1, 1, 10, 100}
– Wq(y|zsym) ∈ {0.01, 0.1, 1, 10, 100}
– Wq(y|x) ∈ {0.01, 0.1, 1, 10, 100}

For Mario we explore the following values; we repeat the model training 5 times for each configura-
tion.

• VAEL

– z ∈ {20, 25, 30, 35, 40}
– zsym ∈ {18, 20}
– lr ∈ {0.0001, 0.0005}
– WREC ∈ {1, 10}
– WKL ∈ {0.1, 1, 10}
– WQ ∈ {1, 100, 10000}

• CCVAE

– zsym ∈ {3, 4, 5, 10, 20, 30, 40, 50, 100, 200, 300, 400}
– lr ∈ {0.0001, 0.0005}
– WKL ∈ {0.0, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000}
– WREC ∈ {1, 10}
– Wq(y|zsym) ∈ {1, 10, 100}
– Wq(y|x) ∈ {1, 10, 100, 1000}

E DATA EFFICIENCY: SIMPLIFIED SETTING

To further investigate the performance gap between CCVAE and VAEL in the Data Efficiency task
described in Section 3, we run an identical experiment in a simplified dataset with only three possible

11

NeSy-GeMs workshop at ICLR 2023

digits values: 0, 1 and 2. The goal is to train CCVAE on a much larger number of images per pair,
which is impractical in the 10-digits setting, due to the combinatorial nature of the task. The dataset
consists of 30, 000 images of two digits taken from the MNIST dataset LeCun et al. (1998). We use
80%, 10%, 10% splits for the train, validation and test sets, respectively. As for the 10-digits dataset,
each image in the dataset has dimension 28× 56 and is labelled with the sum of the two digits. In
Figure 6 we compare VAEL and CCVAE discriminative, generative and reconstructive ability when
varying the training size. In this simplified setting, CCVAE requires around 3, 000 samples per pair
to reach the accuracy that VAEL achieves trained with only 10 samples per pair.

100 101 102 103

0

0.2

0.4

0.6

0.8

1

Training Size

D
is

cr
im

in
at

iv
e

A
cc

ur
ac

y

VAEL
CCVAE

100 101 102 103

0

0.2

0.4

0.6

0.8

Training Size

G
en

er
at

iv
e

A
cc

ur
ac

y
VAEL

CCVAE

100 101 102 103
0

0.1

0.2

0.3

0.4

0.5

Training Size

R
ec

on
st

ru
ct

io
n

L
os

s

VAEL
CCVAE

Figure 6: Discriminative, generative and reconstructive ability of VAEL (blue) and CCVAE (red)
trained in contexts characterized by data scarcity. Both the models are evaluated on the same test set.
The training size refers to the number of samples per pair of digits seen during the training.

F ADDITIONAL RESULTS

Here we report some additional results for the tasks described in Section 3.

Figures 7 and 8 show additional qualitative results for the Conditional Image Generation and Task
Generalization experiments relative to 2digit MNIST dataset.

In Figures 9 and 10, we report some additional examples of Image Generation and Task Generalization
for Mario dataset. As it can be seen in Figure 10, VAEL is able to generate subsequent states consistent
with the shortest path, whatever the agent’s position in the initial state (t = 0). Moreover, the model
generates states that are consistent with the initial one in terms of background.

Figure 11 shows some examples of image reconstruction for CCVAE. As it can be seen, CCVAE
focuses only on reconstructing the background and discards the small portion of the image containing
the agent, thus causing the disparity in the reconstructive and generative ability between VAEL and
CCVAE (Table 1).

Figure 7: Conditional generation for CCVAE and VAEL for 2digit MNIST dataset. In each column
the generation is conditioned on a different sum y between the two digits.

12

NeSy-GeMs workshop at ICLR 2023

Figure 8: Examples of the generation ability of VAEL in 3 previously unseen tasks for 2digit
MNIST dataset. In each column the generation is conditioned on a different label y referring to the
corresponding mathematical operation between the first and second digit.

Figure 9: Examples of the generation ability of CCVAE and VAEL for Mario dataset.

13

NeSy-GeMs workshop at ICLR 2023

Figure 10: Examples of the generation ability of VAEL in previously unseen tasks for Mario dataset.
In each row, VAEL generates a trajectory starting from the initial image (t = 0) and following the
shortest path using an up priority or a right priority.

14

NeSy-GeMs workshop at ICLR 2023

Figure 11: Examples of reconstructive ability of CCVAE and VAEL trained on Mario dataset.

15

	Introduction
	The VAEL Model
	Experiments
	Probabilistic Logic Programming
	ELBO derivation
	ELBO estimation and Learning
	Implementation details
	VAEL
	CCVAE
	Classifiers
	Optimization

	Data Efficiency: simplified setting
	Additional Results

