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ABSTRACT

Harnessing program induction, coupling robustness and expressivity, by combin-
ing some form of symbolic and procedural knowledge appears to be a promising
direction towards more open-ended innovation, and extrapolative behavior. Build-
ing upon DreamCoder framework (Ellis et al., 2021), we present an unsupervised
diversity-oriented neurosymbolic learner: Open-Ended Dreamer (OED). Balanc-
ing environmental, language and novelty pressures, OED aims to learn novel, and
useful programmatic abstractions. As a first test-bed we experiment with a tower
building environment, where we analyze the benefits of library learning, neural
guidance, innate priors, or environmental pressures to guide the formation of sym-
bolic knowledge and open-ended program discovery.

1 INTRODUCTION

Open-ended refers to a process that produces increasingly diverse and complex artifacts. An archety-
pal inspiration are evolutionary processes which, through iterations blending variation and selection
mechanisms, have brought a stunningly diverse array of lifeforms and behaviors on Earth. Most of
these lifeforms exhibit a complex nested and modular structure, whose primitive components can be
found across numerous other species.

Similarly, a significant part of human knowledge and skills exhibit some form of hierarchical and
compositional structure, as we relentlessly invent more complex artifacts and behaviors from previ-
ous stepping stones —explicit or implicit, collective or individual. This ability to re-use, combine,
transfer or scale previous discoveries is crucial to both human learning and adaptation.

Methods combining symbolic component with neural learning have shown great potential in grasp-
ing forms of compositional generalisation, while providing interpretable representations Chen et al.
(2020); De Raedt et al. (2019). For instance, a neuro-symbolic model like DreamCoder (Ellis et al.,
2021) has proven to be versatile in tackling multiple domains via program induction1, from creative
tasks as logo generation to more classic programming inductive tasks like physical laws regression.

This work extends DreamCoder towards open-endedness, making it less dependent on supervi-
sion. Our diversity-oriented neuro-symbolic model —Open-Ended Dreamer (OED)— balances ef-
ficiency2 and novelty pressures in order to learn a compact and diverse set of reusable programs,
organized in a hierarchical library. Our main contributions can be summarized as follows:

(i) A diversity-oriented neurosymbolic learner, whose learning process (cf. Figure 1) includes:
(i1) Niche-conditioned neurally-guided generation, with controllable stochasticity; (i2)
Novelty-guided selection mechanism;(i3) Abstraction across niches of elites: dynamic li-
brary learning with diversity-oriented filtering and pruning.

(ii) Experiments both on biasing the formation of symbolic knowledge, with innate priors, or
environmental pressures (cf. Section 4,B.3) and on the novelty-efficiency trade-off, with
phenomenon of convergent evolution (cf. Section A.7,B.4).

∗

1Programs are an adaptive, robust and expressive way to encode both artifacts and behaviors, compelling
for their logical, interpretative and extrapolative qualities.

2Here efficiency pressure encompass both environmental pressures, and language-related pressure.
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Figure 1: Open-Ended Dreamer follows an open-ended neuro-symbolic iterative process. (1)
Neurally Guided Generation: programs are generated and distributed by niches in F , by auto-
regressively querying the neural model QL; (2) Novelty-Guided Selection: most novel programs
are selected to form the elites E ⊂ F ; (3) Abstraction across niches: through a EM algorithm with
a Bayesian criteria, refactored programs are abstracted to grow a library L of programmatic ab-
stractions; (4) Training to consolidate the neural guidance on both replays and imagined programs,
aiming to approximate a Bayesian posterior. Right Side: Illustration of programs generated through
successive iterations.

Our ablation experiments in a 2D tower building domain suggest that both the symbolic library resp.
the neural guidance favor a continued creation of increasingly diverse and innovative programs
(Section 4,B.2). The neural guidance is crucial in this discovery, and library learning improves the
learning and support a more sustained generation, although considerably biasing the search space.
Promisingly, the OED learner keeps finding novel solutions, although efficiency is favored over
novelty in most of our experiments, as discussed Section A.7. Biasing the formation of symbolic
knowledge through innate priors (e.g. bootstrapped library or metrics) also appears to help OED
to create more diverse programs (Sections 4, B.2). Higher environmental pressures, seems to slow
down this novelty search, and leads to more constrained, but also more consistent program discovery.

2 RELATED WORKS

This work touches upon neuro-symbolic models, program synthesis, and library learning. It is
also rooted upon open-endedness considerations, as enacted in novelty-search and quality-diversity
algorithms. We provide some related works in Section A.10, and only present in the main paper
DreamCoder (Ellis et al., 2021), on which we built upon.

DreamCoder (Ellis et al., 2021) frames learning as program induction, and aims to jointly learn a
hierarchical library of building blocks —called primitives, represented as programs—, and the intu-
ition on how to compose them to solve a given task, via a neural network referred to as recognition
model. DreamCoder takes place in a multi-task context, and leverages the variety of tasks to learn a
library of useful units across these tasks. Programs may be either deterministic or probabilistic, and
either act generatively (e.g. generating an artifact like a structure or image) or conditionally (e.g.
input-output mapping), and are constructed upon a predefined Domain Specific Language (DSL).
DreamCoder follows a loose version of wake-sleep algorithms and a Bayesian framework: the li-
brary encodes a prior on program and the neural model aims to approximate a Bayesian posterior.
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3 OPEN-ENDED DREAMER

As DreamCoder, OED consists of both a neural and a symbolic component bootstrapping each other:
L, the Generative Model: a hierarchical symbolic library of concepts learning useful abstractions by
capturing regularities across niches; Q, the Recognition Model: a neural model, trained to approxi-
mate the posterior distribution over elites programs given a niche, responsible for biasing the search
space. As schematized in Figure 1, OED learns through an iterative process of Neurally Guided
Generation, Novelty-Guided Selection, Abstraction and Neural Training, summarized below and
detailed in Appendix A. A pseudo-Code is provided in Algorithm 1.

Supervision Relaxation By adopting a quality-diversity approach, OED relaxes DreamCoder’s
supervision needs by eliminating the requirement for handpicking tasks. Following MAP-Elites
(Mouret & Clune, 2015), OED keep tracks of a multi-dimensional archive of phenotypic elitesA, cut
into niches {Az} along some predefined behavioral characteristics. Here, both the local competition
and minimal criteria implemented blend novelty and efficiency pressures.

Bottom Up and Top Down generation Both a top-down generation following the generative
model induced by the library L, and a bottom-up generation following the conditional model QL

takes place at different stages (cf. Algorithm 1). Programs ρ are first selected both from an
efficiency-driven local competition on their posterior (maxρ∈z P(ρ | z,L) ∝ P(z | ρ)P(ρ | L)),
given a niche z. To soften the efficiency pressure, we incorporated controllable stochasticity through
sampling (instead of enumerating), as discussed Section A.7, A.3, with a minimal criteria on their
prior (P(ρ | L) ≥ δeff ).

Novelty-Guided Selection The most novel programs are selected from previously generated pro-
grams, to form the elites E , along two-steps of novelty-driven local competition (maxρ∈z η

A
ρ as

defined in Equation 4) and novelty-driven minimal criteria (ηAρ ≥ δnov). Section A.2 details the
choice of the underlying metric space.

Abstraction The abstraction phase, first refactors the elites to find common program fragments,
before abstracting these into new primitives3, which are programs, of arity≤ 3 in our experiments. It
relies on the compression algorithm from Ellis et al. (2021) aiming to maximize a Bayesian criterion,
through a generalised Expectation-Maximisation algorithm (Dempster et al. (1977)). To encourage
a more evolving library, and soften the language-bias, we proposed a stochastic pruning mechanism,
weighted by innovation persistence or reach defined Section A.8).

Neural intuition OED trains the recognition model to predict an approximate posterior over pro-
grams conditioned on the niche latent z, Q(ρ | z) ≈ P(ρ | z,L), both on replays from previous elites
and fantasies –i.e programs sampled from the generative model. More details about the recognition
model is detailed in Section A.6 and Figure 4.

4 EXPERIMENTS

We demonstrate our algorithm on the Tower Domain introduced in Ellis et al. (2021). Our approach
relies on the same monadic, continuation-passing encoding of imperative programs. In this domain,
the programs produce a sequence of actions, which encode the instruction of a hand moving over a
2D discretized canvas, which can drop horizontal or vertical blocks. The state of the hand encom-
passes both a 1D position and a boolean orientation. As behavioral characteristics, we use: center of
gravity, width, and number of blocks of the tower generated from a program, and the ecosystem min-
imal criteria consists of lower and upper bounds to these values. Figures 10, 8, 5 show a selection
of some of the programs produced, dreamed or abstracted.

Figure 6 provides a quantitative results of OED model (BASE run) comparatively with ablation ex-
periments detailed in B.2. OED manages to populate all niches after only a few iterations (11), with
a search times drastically decreasing after a few iterations, and a ratio of legit programs increasing.
As illustrated in our ablation studies, OED leverages both neural and symbolic component and seems
to steadily keep finding both efficient (cf. log Priors (e)) resp. novel solutions (cf. novelty scores
(f)), with even a slight increase of diversity throughout evolution. Being capable of maintaining a
steady novelty-score constitutes a promising sign of the open-endedness potential of the algorithm.

3This sequestration of information into reusable units –abstractions– is a form of knowledge compres-
sion/distillation.
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Figure 2: Extract of elites for INNATE (top) and BASE run (bottom), from early (1, 2) mid (4, 5) to
late (8, 9) iterations. OED produces progressively more complex artefacts.

It is important to note that the majority of experiments presented here are subjected to a strong
efficiency (over novelty) pressure. However, as detailed Section A.7, the regulation of this balance
via our hyperparameters could be investigated in future experiments.

Biasing Symbol Learning Since bias is a core component to direct symbol learning in social and
natural systems, we examine different ways to bias evolution and guide the formation of symbolic
knowledge, through either: (1) innate knowledge: the initial library is seeded with a few handpicked
programmatic abstractions; (2) stronger environmental pressure: with a gravity-aware environment
with Box2d Physic Engine, or (3) biased metrics: guiding the novelty-search with a pre-trained
CNN (default setting in most runs) instead of image-downsampling for the (RAW) Run. More
details about these experiments can be found in Section B.3,7. Some main take-away: (1); Innate
Priors help bootstrap the search at early stages, and the programs generated, dreamed or abstracted
seems qualitatively more engaging and diverse (Figures 10, 8, 5). Yet it does not bring a strong
quantitative advantage, which reflects a limited diversity metric and the bias ensuing from these
priors;(2): the challenges brought by the physical constraints considerably slow down the program
discovery, and the invented programs are more less diverse, yet consistent with the constraints (3):
biasing the novelty-search through a more pertinent metric has, expectedly, a strong impact on the
quality of the observed diversity.

5 CONCLUSION

While preliminary, our results suggest that neurally-guided library learning, enabling both more
efficient program discovery and more sustained diversity is a promising framing towards open-
endedness. By building a library of programmatic abstractions —instead of solutions—, our method
preserves regularities in a more potent and versatile way than other diversity-oriented approaches.
As we have seen, OED offers the possibility of guiding the formation of symbolic knowledge both
with innate priors, biased metrics and environmental constraints. While putting the accent on ef-
ficiency pressures –both language-bias and environmental–, resulted in phenomenon of convergent
evolution in our experiments, we expect that by loosening this pressure (cf. A.7) while allowing
longer runs, we could witness more creative divergence. We leave this investigation to future work.

The simplicity of the Tower Domain task do not allow OED to reach its full potential for open-ended
creation. Richer environments with stronger environmental coupling, and functional objective (such
as in Minecraft Fan et al. (2022); Grbic et al. (2021)) could be key to further innovation. In future
works, both the neural guidance, currently not tailored for diversity-enhancing, and the diversity-
promoting algorithm could be refined towards an evolving and richer behavioral representation.
A compelling development would be to use OED for the production of increasingly sophisticated
behaviors, instead of simply artifacts.
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A MODEL

A.1 PSEUDO-CODE

A simplified version of the learning loop is summarized in the pseudocode in Algorithm 1. Full code
will be open-sourced on Github in the near-future.

A.2 METRIC SPACE

Both the phenotypic distance defined in Equation 1 and the point cloud approximation of the func-
tional phenotypic distance defined Equation 2 are illustrated in Figure 3.

Phenotypic Distance To capture interesting variations between structures, we rely on a pre-trained
visual network (VGG 16Simonyan & Zisserman (2014)). We expect that fine-tuning a visual feature
extractor on the Tower Domain would make these high level features even more relevant to the
data, and therefore the notion of distance more subtle and pertinent. It could be the object of future
experiments. In our (RAW) experiment (cf. Section B.3), we intend to remove this bias, and simply
(naively) rely on a downsampled version of the image as visual features.

To each program ρ, we can associate a black and white image Iρ obtained after executing the pro-
gram and rendering the block structure it corresponds to. The phenotypic features fρ ∈ Rd are
computed by either downsampling the centered image to a fixed resolution of r × r (r being an
hyperparameter; case of the (RAW) experiment only), or by computing its visual features using a
pretrained CNN (most of experiments).

1At each iteration, niches are sampled following a mix of a random sampling and a novelty-biased sampling
(where the sampling weights are the novelty score of the niche), with a ratio set by default at 0.5.
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Algorithm 1: Open-Ended Dreams
Input: Initial library L0, behavioral space cut into niches Z .
Output: Library L, Recognition model Q, Archive A, Elite E
Hyperparameters: Batch size bs, enumeration timeouts tTD, tBU , frontier bound MF ,

efficiency threshold δeff , novelty threshold δnov , library novelty threshold δlib, elite bound
topK, number iterations numIterations, stochastic weight parameter αsto, training steps T .

for i from 1 to numIterations do
/* Weighted-sampling of a set of niches of size bs1

*/
B ∼ Z

/* (TopDownGENERATION) from L of high posterior programs */

FTD ← L.enumerate(MF , t
TD), where | FTD

z |≤MF

/* (TRAINING) Train Recognition Model Q on replays and dreams */
Q.train(R,D, T ) whereR = {ρ | ρ ∼ A} and D = {ρ | ρ ∼ L}

/* (BottomUpGENERATION) from the Recognition Model,
niche-conditioned */

∀z ∈ B, FBU
z ← Q.enumerate(z,MF , t

BU )
if

αsto > 0

then
/* (Bottom Up Sampling from the recognition model Q: */

∀z ∈ B,FBU
z ← FBU

z ∪Q.sample(z, αsto, δ
eff ,MF )

end if

/* (NoveltySELECTION) Update Elites selecting most novel solutions
(local competition and minimal condition) */

∀z ∈ B, Ez ← topKNovelty(Fz, topK, δnov) where Fz = FTD
z ∪ FBU

z

/* (ABSTRACTION) */
/* Stochastic Pruning, weighted by innovation activity */

L← L.prune(δlib)
/* Refactor these programs, i.e. find equivalent programs. */
∀ρ ∈ E ,Rρ ← refactor(ρ)
/* Update Library L with an EM algorithm to maximise: */
L← argmaxP(L)

∏
z∈B

∑
ρ∈Ez

P(z | ρ)maxρ̃∈Rρ P(ρ̃ | L)
/* Novelty Filtering of the new primitives */

L← L.noveltyFilter(δlib)
end for
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(a)

(b)

Figure 3: Examples of phenotypic distance between (a) programs (b) primitives, here relying on
VGG 16 Simonyan & Zisserman (2014). (a) For each new candidate program generated, the novelty
score is computed as the k-mean (k = 3) phenotypic distance elites programs in the archived (cf
Equation 4). TopK(K = 4) most novel solutions, which are above a threshold δnov (= 0.015 in
our experiments) will be selected in the new Elites of this generation. (b) For each new primitive
candidate to the library, we evaluate its distance (as defined Equation 2) to the other primitives
already in the library L. If one of these distances is below a certain threshold (hyperparameter
δlib ∼ 0.35 in our experiments), they are discarded. In this figure, red candidates are discarded
because of the minimal novelty threshold required.
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The phenotypic distance is then defined as the euclidean distance: 4

d(ρ, ρ′) := d(fρ, fρ′) (1)

Point-based approximation for functional distance To evaluate the functional distance between
primitives (functions of arity ≤ 3 in our experiments), we propose a point-based approximation.
First, we sample for each primitive a set of mp ≤ 20 programs stemming from the primitive instan-
tiation on arguments ∈ {0, 9} referred to as a stochastic cloud of p, Ĉp. The approximate functional
distance between primitives is then defined as the average over p-clouds programs of the (min)
distance to p′ cloud.

ˆd(p, p′) :=
1

mp

∑
ρ∈Ĉp

(
min

ρ′∈Ĉp′

(d(ρ, ρ′)

)
. (2)

where d(ρ, ρ′) is defined by Equation 1. In the abstraction phase, we incorporate a filtering mech-
anism, filtering out candidate primitive which are too close (given a threshold δlib) from primitives
already in the library L, which relies on this distance.

A.3 BOTTOM UP AND TOP DOWN GENERATION

Both, a top-down enumeration following the generative model induced by the library L, and a
bottom-up neurally-guided enumeration following the conditional model QL, take place at different
stages. In both case, we aim first to populate the sampled niches with the most efficient programs,
selected according to their posterior:

P(ρ | z,L) ∝ P(z | ρ)P(ρ | L), (3)

where z denotes a sampled niche feature, ρ a program, L the library. The likelihood P(z | ρ)
evaluate how a program ρ fit in a given niche (including some minimal criteria), and the prior
reflects P(ρ | L) how they fit in the library, i.e. how likely they are under the generative model. In
these enumerations, programs are roughly enumerated in decreasing prior probability order,5 and
distributed between bounded frontiers FTD, resp. FBU .

Looking at programs with the higher posterior in each niche enacts a efficiency-driven local compe-
tition on the posterior.

Leveraging Stochasticity To lower the efficiency pressure (as discussed Section A.7), in con-
trast to DreamCoder, OED incorporate a Bottom Up sampling from the recognition model Q. This
Bottom Up sampling includes an efficiency-guided minimal bound on the prior of the programs
generated (P(ρ | L) ≥ δeff , yet more loose than in the previous enumerations). By adjusting the
number of sample, we can balance the stochasticity level6, since the Bottom Up Frontiers obtained
both through enumeration and sampling are merged before the novelty selection.

A.4 NOVELTY-GUIDED SELECTION

After merging top-down FTD and bottom-up frontiers FBU , the most novel programs are selected,
to form the elites E of the current iteration, coupling local competition and minimal criteria:

(i) Local competition: Selection of the top-k most novels programs per niche. A local novelty
score is computed for each program ρ in a niche z as the K-mean of the phenotypic distance
to the archive elements of the same niche Az:

ηAρ :=
1

K

∑
ρ′∈Nz,ρ

d(ρ, ρ′), (4)

4We normalize the phenotypic features to ensure they are in the interval [0, 1] (through a softmax) and that
the distance between two programs similarly lies in the interval [0, 1].

5More specificity about this enumeration procedure, which mixes best-first search with depth-first may be
found in Ellis et al. (2021), Algorithm 3.

6Additional, more minor, sampling mechanisms are incorporated in the Bottom Up generation (sampling
from enumerated programs), or in the compression frontiers sent to the compressor (sampling from elites for
the procedure to be tractable), or in the stochastic pruning mechanism of the library mentioned below.
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where d is the phenotypic distance defined in Section A.2) and Nz,ρ is defined as the local
neighborhood of ρ in Az , i.e. the set of the K closer neighbors from ρ in a same niche z.
Typically, K is set to 3 or 1 in our experiments. Top-K programs are selected one-by-one
for the sampled niche, and at each step, the novelty score of each candidate is re-evaluated
to adapt to the growing niche.

(ii) Minimal Criteria: from these selected programs, we retain only the programs whose nov-
elty score is above a fixed novelty-threshold ηAρ ≥ δnov .

A.5 ABSTRACTION

The abstraction phase aims to grow the library from useful and novel building blocks found across
niches. It relies on DreamCoder self-supervised compression algorithm (detailed in Ellis et al.
(2021), Appendix S4.5), which first refactors the elites in order to find common program fragments,
before abstracting these fragments out into new functions, while aiming to maximize a Bayesian
criterion. These abstracted programs –referred to as primitives– are functions of arity maximum 3
in our experiments.

The generative model L consists of a set of primitives P (λ-calculus expressions) and a weight
parameters θ (dimension #L + 1), which are co-optimized following a form of generalised
Expectation-Maximisation algorithm (Dempster et al., 1977). The consolidation steps aims to max-
imise a Bayesian objective: 7

L(P, θ,F) = P [L]
∏
z

∑
ρ∈FCOMP

z

max
ρ̃

P [z | ρ]P [ρ | L], (5)

where the max is taken over all the possible refactoring ρ̃ of a program ρ, and FCOMP is a bounded
subset of elites programs sent to the compressor at one iteration.8

More precisely, each compression step includes a step of estimation of the weight vector θ∗(P)9,
and a step of maximisation of the following library score over new candidate primitives p′:

max
p′

score(P∪{p′}) where


score(P ′) := logP[P ′] + logL(P ′, θ∗(P))− ∥θ∗(P)∥0
L(P ′, θ) :=

∏
z

∑
ρ∈FCOMP

z
maxρ̃ P [z | ρ]P [ρ | P ′, θ]

P[P] ∝ exp
(
λ
∑

p∈L size(p)
)

(6)
It includes a prior penalizing the syntactic complexity of the λ-calculus expressions in the library,
to avoid unnecessary growth. This co-optimisation loop goes on until no further increase in the
grammar score is possible, or after reaching a maximum of compression steps.

To enable further efficiency resp. adaptivity, we propose two additional mechanisms:

1. a novelty-guided library minimal criteria: new primitive p′ shall be distant enough from
existing primitives in the library L:

max
p∈L

d(p, p′) ≥ δlib

To evaluate such functional distance, we rely on the phenotypic metric space an a point-
based approximation defined in Section A.2.

2. stochastic pruning mechanism: every iteration, we sample≤ β primitives to prune (β being
an hyperparameter, e.g. 2 in our experiments). This sampling is weighted by the activity
score of each primitive at the current iteration which represents its frequency among the
elites, as defined in Equation 7. Note that the innovation reach score, defined in Equation 8,
could be another candidate to weight the pruning.

A.6 TRAINING THE NEURAL INTUITION

The recognition model, illustrated in Figure 4, aims to learn how to compose the programmatic
abstraction to create novel programs. It plays the crucial role of biasing the search space, by drasti-

7L can be seen as a particle approximation marginalized over a finite set of programs.
8For this procedure to be tractable, the size of this set shall be constrained.
9The tractable MAP estimator adopted is detailed in Ellis et al. (2021), Appendix S4.5.4.

10



Published as a conference paper at ICLR 2023

Figure 4: Architecture of the Recognition Model. It encompasses a feature extractor and a contextual
Grammar Network and outputs a conditional probability matrix depending of the number of library
elements and the maximum arity allowed.

cally reducing the breadth of search in the combinatorially exploding space of programs. It encodes
a distribution over the elements in the library conditioned on the local context: taking as input a
latent niche vector z, and the current state s passed as an image (e.g. image of the current tower
being constructed), it outputs a probability tensor encoding the probability of a next token being j
given the previous token in the growing language. Querying the recognition model auto-regressively
produces therefore a program.

In the Dream phase, Dream Coder (Ellis et al. (2021), Section S4.6) trains the recognition model
to predict an approximate posterior over programs conditioned on the niche latent z, Q(ρ | z) ≈
P(ρ | z,L). In OED, the novelty selection makes this bayesian objective more loose, since elites
are selected as a subset of the highest posterior solutions found (non stochastic case). The neural
network is trained both on replays from elites from previous iterations and fantasies –i.e programs
sampled from the generative model–, with a dream ratio by default set at 0.5.

A.7 EFFICIENCY-NOVELTY TRADE-OFF

At the core of OED search for diversity-enabling programmatic abstraction –and at the core of open-
endedness– is a delicate balance between efficiency resp. novelty: for instance, most novel solutions
compared to the archive commonly stands out as less likely given the generative model, and therefore
could be discarded in the first efficiency-driven generation step. It is important to note that the
efficiency pressure we refer to encompasses both (i) an environmental pressure, notably enclosed
within the likelihood P(z | ρ) term in the posterior10, and (ii) a language-pressure stemming from
the learned generative model L, notably enacted by the prior P(ρ | L) term.

Our model provide ways to balance efficiency versus novelty pressure. For instance, to loosen the
efficiency pressure, we may increase the enumeration times, increase the first bound on each frontier
MF regulating the efficiency local competition, lower the efficiency threshold δeff , increase the
Helmholtz sampling in the dream phase, lower the structure penalty (penalising longer primitives),
but also, increase the proportion of sampling allowed within the generation, as explained A.3, A.9.
Loosening up the efficiency pressure in favor of the novelty pressure would result in more diversity
yet less regularity, and more arduous abstraction as early experiment suggests.

A.8 INNOVATION METRICS

’Innovation’ is a relatively broad term 11 involving the production of ’novel’ ideas or artifacts which
many have attempted to define in various socio-economical contexts12 Often innovation puts a strong
emphasis on a successful implementation and adoption: the production, assimilation, and exploita-
tion of a value-added novelty. By the fuzziness of its definition, quantifying or identifying innovation

10Both the ecosystem minimal criteria and the behavioral space are affecting this likelihood.
11We can witness innovation of different degrees and forms. For instance, Wolfgang Banzhaf Taylor et al.

(2016) differentiate ’innovation within’, ’model innovation’, ’meta-model innovation’, while Henderson and
Clark differentiate ’incremental innovation’, ’radical innovation’, ’architectural innovation’, ’modular innova-
tion’ Henderson & Clark (1990)

12Sociologist Everett Rogers defined it as: Rice & Rogers (1980): ”An idea, practice, or object that is
perceived as new by an individual or other unit of adoption”.
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is a knowingly challenging task. However, innovation persistence13, resp. innovation reach, judging
the extent resp. the diversity of their offspring appear to be pertinent proxy metrics to examine.

(i) Innovation persistence is reflected by the frequency of its use among the elites throughout
the evolutionary run. For p a primitive, we define the activity score νip of p at iteration i as
its frequency among the elites of this generation:

νip :=

∑
ρ∈Ei δp∈ρ

#E i
, (7)

where δs is Kronecker symbol, being 1 if s is True, 0 else, and #• denotes the size of a set.

(ii) Innovation reach, as mentioned in Taylor et al. (2016) reflects the idea that an invention
has a diverse offspring. We adopt the following definition for the reach of p, measuring its
offspring diversity:

µi
p :=

∑
ρ∈Oi

(δp∈ρ) , (8)

where Oi ⊂ E i is defined as the offspring of p among iteration i. Similarly, we define a
cumulative reach score µp for the primitive p where Oi

p is replaced by the whole offspring
of p in the archive.

A.9 ROLE OF STOCHASTICITY IN THE EMERGENCE OF INNOVATION

Stochasticity, instabilities, and the possibility of historical contingencies 14 seems to be strongly
tied to the emergence of Innovation throughout history15. In that regard, but also to lower the
efficiency pressure (cf. Section A.7) we incorporated more stochasticity in OED learning, alongside
hyperparameters to balance the desired stochasticity level: e.g. Bottom Up Sampling as explained
in Section A.3, stochastic pruning mechanism of the library as detailed in A.5, or from the replays
in the recognition model training and from the compression frontiers sent to the compressor. An
illustration of an early run (iteration 2) is shown Figure 13, yet we leave further study about benefit
and drawbacks of stochasticity for future work.

A.10 RELATED WORKS

Neuro-Symbolic Models Despite certain compelling advantages of robustness or interpretability,
pure symbolic system, relying on logic and rule-based systems for instance, are often brittle to
noise, uncertainty, expensive, and often neither scalable, nor adaptive. In that regard, neuro-symbolic
models De Raedt et al. (2019); Hitzler (2022),are combining the strengths of both neural networks
and symbolic reasoning. Leveraging the ability of neural networks to process large amounts of data,
and borrowing certain symbolic reasoning capability from traditional symbolic systems, they can
perform both perceptual and reasoning tasks. They can better adapt to new information and handle
ambiguity and uncertainty, which is essential to tackle complex, and noisy real-world problems.

Program Synthesis Program synthesis refers to the automatic generation of computer programs
commonly from either input/outputs examples(as Dream Coder

Language/Library Learning Symbol learning focus on learning symbolic representations from
data and knowledge, and use these newly learned representations to perform tasks such as prediction,
classification, and reasoning. Learning new abstraction (symbol learning, or more specifically even
library learning) is a promising research question, which researchers have approached from different
perspectives: some have looked at learning symbol from visual clues Mao et al. (2019), some from
human demonstration, closer to this work, are learning DSLs or libraries by inferring reusable pieces

13”If the innovation is adaptive, it persists in the population with a beneficial effect on the survival potential
of the components that have it. It persists not only in the component which first receives the innovation, but in
all subsequent components that inherit the innovation.”?

14I.e. ”chance-influenced events with substantial long-term effects, that is, events which clearly take history
down a different path than it otherwise would have followed”. Taylor et al. (2016)

15In Taylor et al. (2016), Norman Packard suggest instabilities may lead to the emergence of innovation.
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of code (e.g. Ellis et al. (2021); Devlin et al. (2017a); Nye et al. (2020); Tian et al. (2020); Liang
et al. (2010); Devlin et al. (2017b); Ellis et al. (2018)), etc. Collateral to the idea of bias within
programmatic symbolic knowledge, a recent work Kumar et al. (2022) look at how language – and
therefore programs– are repositories of abstract prior knowledge, –and human bias– and can be used
to elicit human-like bias in other tasks.

Novelty Search and Quality Diversity Novelty Search (NS) and Quality Diversity (QD)are ap-
proaches in machine learning that focus on finding novel and diverse solutions to complex problems,
rather than directly focusing on finding the global optimum. Traditional NS approaches are purely
novelty-driven, and have proven to be competitive on certain tasks, despite never having specified
the objective Eysenbach et al. (2018). Quality Diversity algorithms Pugh et al. (2016) (e.g., novelty
search with local competition Lehman & Stanley (2011a) and MAP-Elites Mouret & Clune (2015))
have adopted a more nuanced approaches of evaluating solutions both based on their performance
and their novelty. To preserve diversity, often approaches enact forms of local competition, where
solutions are only competing when being close enough in a behavioral space; cf. the ’bins’ in MAP
Elites which are inspired by ecological niches. Nguyen et al. (2015) is another interesting work in
that line of novelty-guided search, where they learn investigate a ’deep notion of distance’, learned
with a neural model. These approach are particularly well-suited for problems that have multiple, of-
ten conflicting, objectives, but also as promising paths to tackle complex or insoluble tasks. Indeed,
they are stemming from the belief than intelligent and complex behaviors would emerge rather from
bottom-up approaches, focusing on gathering diverse skills rather than more top-down approaches,
aiming directly to face a sometimes insoluble task Lehman & Stanley (2011b).

B EXPERIMENTS

B.1 TOWER BUILDING EXPERIMENTS

We refer to DreamCoder for more details about the Tower Building Environment. By default, the
initial Library is seeded with two basic control flow primitives: for (for loop), and get/set
which gets and saves the current state of the agent’s hand. We also provide movement-related
and construction-related primitives: moveHand (advancing the hand), reverseHand (flipping
the orientation), dropVerticalBlock and dropHorizontalBlock. Equation 9 displays
examples of λ calculus expression turned into programs.

To define the niches, we adopt a three dimensional behavioral characteristic, encompassing the cen-
ter of gravity gρ, width wρ, and number of blocks bρ of the artifact generated from a program ρ. The
ecosystem minimal criteria implemented consists of a minimum resp. maximum number of blocks
(e.g. 5 resp. 500), a maximum width and height of the structure (e.g. 300). The behavioral charac-
teristics are defining the ecological niches, and are therefore defining the locality of the competition
in our Quality Diversity Approach. Meanwhile, the phenotypic features defined in Section A.2 are
controlling the local novelty search within each niche. The niches can be seen as a relaxation of the
supervised tasks in DreamCoder, as higher-dimensional subspaces of the behavioral space.

Figures 10, 8, and 5 give examples of some of the programs produced, dreamed or abstracted across
all experiments. The elite programs, first selected based on an efficiency-compression criteria, typ-
ically present stronger regularity than the dreams, more widely sampled and therefore resulting in
more ’diversity’, notably in early stages. The niche distribution is displayed in Figure 11 for some
of our experiments, and the growing hierarchical Library for an Innate run can be seen in Figure 12.
It is important to note that the majority of experiments presented here are subjected to a significant
pressure for efficiency (notably a strong language bias), strongly biasing the search towards the most
efficient solutions to the detriment sometimes of novelty. However, as detailed Section A.7, OED
enable to regulate this balance, which could be further investigated in future experiments.

Quantitative evaluation metrics presented in Figures 6 & 7 include:

(a) Ratio of populated niches across iterations, where the dashed line is the number of sampled
niches.

(b) Number of new elites found in each iteration.

(c) Search Times for the Bottom Up enumeration procedure.
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(a) (b)

(c) (d)

Figure 5: Primitives (programmatic abstractions), added to the library L, from early (top rows) to
late (bottom rows) stages of evolution, across different run. Each box represent a primitive (pro-
grammatic function, of arity ≤ 3), instantiated with different arguments (e.g. numbers from 0 to 9).
(a) BASE Run (CNN), (b) INNATE (c) PHYSICS (d) RAW (downsampling). Instance of Conver-
gent Evolution, i.e. primitives which are been reinvented across run, are highlighted in green.
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(d) Ratio of legit programs found, either through Bottom Up or Top Down (dashed). Note that
missing parts in the Top Down ratio indicates the Top Down enumeration had been skipped,
since no new element in the library had been added in the previous iteration.

(e) Log Priors (P (ρ | L)) of the Elites, which are a measure of how compressed are the
programs found relatively to the generative model L, therefore reflecting how ’efficient’
are the elites.

(f) Local Novelty Scores, either historical (i.e the local novelty scores of the new elites at a
given iteration, computed against the current existing archive as explained in A.4) or final
(i.e. KMean of the distance of computed at each iteration considering t) (dashed line).

B.2 ABLATION EXPERIMENTS

(a) (b)

(c) (d)

(e) (f)

Figure 6: Comparative ablation experiments on (a) Niches Population (b) Number of Elites (c)
Bottom Up Enumeration Search Times (d) Ratio Legit Programs found, either Bottom Up or Top
Down (dashed) (e) Log Priors (f) Novelty Scores, historical and final (dashed).

To assess the benefit of the different components of our model in the open-ended creation of di-
verse programs, we run several ablation studies both (A-L) without the library, (A-R) without the
recognition model, (A-N) without the novelty-Selection. Comparative results are presented in Fig-
ure 6. Qualitative results in Figure 10, 5 confirms quantitative results in terms of the overall im-
poverishment of found solutions in these ablation experiments. Some main take-away from these
experiments:

(A-L) As reflected in Figure 6, Library learning helps to sustain a flow of novel and diverse
programs (as the number of found solutions is drastically decreasing after the 4th iteration,
cf. (b)) but also in terms of efficiency, both in terms of the programs created (log priors
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becomes much smaller for (A-L), cf. (e)), and in terms of the learning itself (the search
time is an order of magnitude higher in (A-L), cf.(c), or the ratio of legit programs is poor,
cf. (d)). The diversity exhibited from (A-L) run, as reflected Figure 10 seems much wider
than in a base run, notably at start. In this first non-challenging environment, niches are
still mostly populated under library ablation, as reflected in Figure 6, (a) or Figure 11, albeit
distinctly less populated than in a (BASE) Run. We expect that in challenging environment,
library learning would be a pivotal point to populate the ecological niches and overcome
more complex challenges.

(A-R) The neural guidance seems an essential component to the discovery programs, both in terms
of efficiency and novelty. The non-guided learner in the [(A-R) experiments do not manage
to find solutions above the novelty threshold after a few iterations nor to populate most
of niches, as reflected in Figure 6 (a), (b), (d), (f). The neural guidance is crucial in such
neuro-symbolic model since it helps facing the issue of the intractability of the symbolic
search space due to its combinatorial nature.

(A-N) Without the novelty pressure, the learner manage to populate niches (since the novelty
threshold is removed, it becomes a much easier task), yet, the archive exhibit a very low
final diversity score. The elites found seems to enact efficient ways to populate the niches
(e.g. the widening parallelogram type of structure present in Figure 10 to fit all the niches),
yet crucially, lack of diversity.

B.3 BIASING SYMBOL LEARNING

(a) (b)

(c) (d)

(e) (f)

Figure 7: Bias Study, with (INNATE), (CNN) and (PHYSICS) biased run, and the minimally biased
(RAW) run. (a) Niches Population (b) Number of Elites (c) Bottom Up Enumeration Search Times
(d) Ratio Legit Programs found, either Bottom Up or Top Down (dashed) (e) Log Priors (f) Novelty
Scores, historical and final (dashed).
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(a) (b)

(c) (d)

Figure 8: Evolution of Dreams through Iterations. (a) Base Early Dreams (it = 1) , (b) Base Late
Dreams (it = 9) (c) Innate Early Dreams (it = 1) (d) Innate Late Dreams (it = 9). Progressively,
dreams displays more structure, and more bias.

The emphasis on implementation nested in the notion of innovation implies the candidate novel
artifacts-ideas will likely undergo strong environmental pressures (e.g. market pressure, functional
pressures, social pressures etc.) when being put at test in the real world, heavily biasing the search
space. It seems therefore legitimate to wonder if strong inductive biases and environmental coupling
are key to guide the emergence of abstract structured knowledge and innovation. Generating and
retaining ’stepping stones to everywhere’ seems indeed too naive -ambitious in such a combinatori-
ally exploding space of programs in the absence of any environmental pressure (what survive, what
functions, etc.). Coupling such quest with some form of inductive bias seems both more realistic to
how symbolic knowledge formation takes place in social and natural systems but also more promis-
ing to lead to more consistent innovations. Such bias may take the forms of innate knowledge or
environmental pressure.

This leads us to investigate the effect of bias on the formation of symbolic knowledge for our learner
across different experiments: (INNATE) relying on a bootstrapped library, (PHYSICS) enacting en-
vironmental pressures and (CNN) using biased metrics, discussed in paragraphs below. Qualitative
results are displayed Figure 7, while quantitative results are reflected through the selected, dreamed
or abstracted programs in Figure 10, 8, 5. We also discuss below the language bias carried on by
the library learning, omitting here the bias carried by the Domain Specific Language itself on which
we ground our experiment.

We observe throughout all these experiments that strong bias has the effect of narrowing the search
space, which in some case can be detrimental to diversity, despite being a necessary part to constraint
symbol learning.

Strong bias also have led to phenomenon of convergent evolution, discussed Section ??, and dis-
played in the learned primitives Figure 5.
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(INNATE)-Boostrapped Library In the Innate Experiment, to bootstrap evolution, we seed the
initial library with a set of 5 handpicked primitives 16 –bridge, staircase, pyramid, towerArch, and
bricks, displayed in Equation 9.

bricks : λ(λ(for $0(λ(λ(moveHand3(reverse(for$3(λ(λ(move6(H$0))))$0))))))))
staircase : λ(for $0(λ(λ((λ(λ(for$1(λ(λ(get.set(λ((λ(V(move4(V(reverse(move2

(H$0)))))))$0))$0)))$0)))$1(move6$0))))))
bridge : λ(λ(for$0(λ(λ((λ((λ(λ(λ(for$0(λ(λ(V(move4($3$0)))))(move2(H$2))))))$0

(λ(reverse$0))))(move4$0)$3)))))
towerArch : (λ(λ((λ((λ(λ(λ(for $0(λ(λ(V(move4($3$0)))))(move2(H$2))))))$0(λ

(reverse(V$0)))))$0$1)))
pyramid : (λ(for $0(λ(λ(move6(get.set(λ(reverse((λ(λ(for $1(λ(λ(move$2(V

(move2((get.set(λ(move2(V$0)))(H$0))))))))))$21$0)))$0))))))
(9)

where V, H, reverse , move are shortcuts for dropVerticalBlock resp. dropHorizontalBlock,
reverseHand, moveHand

Innate Priors helps bootstrap the search for novel programs as the programs generated, dreamed
or abstracted are qualitatively consistently more diverse (Figures 10, 8, 5). First, we observe that
first invented abstractions are happening typically much later than for a BASE run. This is likely
due to the fact that the bootstrapped library helps to face the environmental pressure (i.e. populate
the niches) from early stage on, there is therefore less pressure on abstracting new primitives on
early stages. Secondly, it seems it does not bring a strong quantitative advantage, which reflects a
relatively poor diversity metric, but also the possible downsides of library bootstrapping: too specific
primitive priors, carrying too much bias, may affect the final diversity: e.g. structures carried on
similar building blocks (e.g. pyramid) would easily be judged similar.

(PHYSICS) - Environmental Pressure Experiment Stronger environmental pressures is another
way to bias the formation of symbolic knowledge towards a more consistent path. As a first example,
we experiment with a gravity-aware environment, using Box2D Physics Engine (gravity being set at
9.8), with an optional penalty on the ratio of fallen blocks. Since the Physics Engine noticeably slow
down the simulation, and because of the stronger challenges brought by this constrained environ-
ment, it considerably slows down the search for diverse and complex artifacts, It explains the lower
diversity of artifacts displayed in Figure 10 and the poorer niche distribution in Figure 11. Enabling
much longer evolutionary run could open up ultimately for more diversity. Yet, in counterpart, be-
cause of stronger environmental pressures, the programmatic abstractions seems more consistent,
and display phenomenon of convergent evolution, as discussed Section B.4.

(CNN) - Biased Metrics Underlying the novelty selection mechanism is a crucial choice of a
notion of distance. As mentioned in Section A.2, we experiment with two ways to define the pheno-
typic distance: either relying on a downsampled version of the image (referred to as (RAW) in our
experiments), or relying on a visual features obtained from a pretrained CNN, referred to as (CNN)
or (Base) in our experiments). We use VGG 16 Simonyan & Zisserman (2014) for our experiments,
and obverse that this model has not be fine-tuned nor berry-picked. Extracting high-level and hierar-
chical visual features through a pre-trained visual neural model, enacts a bias in the diversity quest.
Comparing (CNN) run with the (RAW) run in Figure 7 suggest that biasing the novelty-search via
a more pertinent metric has, expectedly, a strong impact on the observed diversity (cf (f)), and the
amount of novel (cf. (b)) programs found. We also suspect that fine-tuning this metric to relevant
data, would help enrich the diversity of found solutions.

B.4 EFFICIENCY PRESSURE

Convergent Evolution Strong efficiency pressures, either from environmental constraints (as in
the (PHYSICS) run), or via stronger language-pressure (cf. (BASE) run), or conversely lower nov-
elty pressure (as in the (A-N) run), seem to favors phenomenon of convergent evolution and the
repeatability of certain evolutionary outcomes, as we observed in our experiments. Indeed, certain
programs and primitives were (approximately) reinvented across different evolutionary runs, as they

16These primitives are extracted from supervised examples in DreamCoder, Figure 5.B, Ellis et al. (2021)
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appeared to be some of the most efficient way to inhabit certain ecological niches and fit the min-
imal criteria (notably when this one is more demanding as in the gravity-aware environment): e.g.
slanted lines, cranes-type structure, parallelograms, comb-like artifact, and combinations of them
as displayed in Figure 5 were commonly reinvented across these runs. Loosening up the efficiency
pressure, and increasing the novelty pressure would encourage more divergent evolution, desirable
in the open-endedness quest.

Language Bias As reflected in the elites invented or dreamed (figure 10, 8), learning a language
also implies learning a strong inductive bias towards the search space. This language bias is notably
enacted through the prior P(ρ | L) pressure in OED learning, stemming from the generation step
detailed in Section A.3. Under a strong language bias –as in most of our experiments–, early prim-
itives incorporated in the library (e.g. the noticeable ”zigzag” artifact in the Base run, which has
been added to the library at the second iteration, cf Figure 5) have a strong effect on the generation
of new programs in the later run. Such bias is also reflected in the evolution of dreams between
the initial and last iteration in Figure 8, in the (BASE) run, the dynamic generative model resulting
from the learned library displays throughout evolution a shift from a more chaotic diversity to a
more structured yet narrow diversity. However, this language bias can be moderated by lowering the
efficiency pressure as discussed in Section A.7, or thanks to the stochastic pruning mechanism we
propose Section A.5.

B.5 LIBRARY LEARNING AND EMERGENCE OF INNOVATION

Figure 9: Primitive Metrics, both (top) innovation persistence and (bottom) innovation reach, for the
Innate Run.

The innovation persistence and innovation reach as defined in Section A.8 from some experiments
is displayed in Figure 9. There, we relied on a sample of the offspring to evaluate the innovation
reach scores µ̂i

p, resp. µ̂p. Although the evolutionary scale is too restricted to comment on long-
term effect, we can observe some interesting fluctuations with certain primitives activity rising,
or exhibiting persistence, while others are almost vanishing throughout evolution. Despite being
generally favored, some initial prior or primitive may fade out (such as the pyramid f01 in the Innate
run), while others early or late primitives may rise (cf. f05, or f54, in the Innate Run displayed in
Figure 9).
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(a) (b)

(c) (d)

´

(e) (f)

Figure 10: Evolution of the Elites artifacts across experiments, for (top) early (i = 1) resp. (bottom)
late (i = 9) iteration. (a) BASE, (b) Innate (c) Library Ablation (d) Novelty Ablation (e) Raw
(f-top) Recognition Ablation (f-bottom) Physics. Note that the fallen blocks in (f) are not properly
rendered. 20
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(a)

(b)

(c)

Figure 11: Population distribution across niches at different iterations (top rows 1st iteration, bottom
last iteration) for different runs. Niches freshly populated are highlighted in green. Unpopulated
niches are displayed in grey. Numbers indicate the population size. The axis stands for a behavioral
feature: X axis represent the Width, Y axis the Gravity, and the Number of Block are increasing
from left to right. (a) BASE environment it = 1, it = 11 (b) (A-L) Library Ablation (c) PHYSICS
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Figure 12: Extract of a Growing hierarchical Library, across iterations for the Innate Run. Lower
Iterations are not displayed as presenting no new primitives. Orange primitives indicates novel
primitives.

Figure 13: Extract of Early Elites (it = 2) from a Stochastic run (Stochastic INNATE).
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