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ABSTRACT

The idea of the disentangled representations is to reduce the data to a set of gen-
erative factors which generate it. Usually, such representations are vectors in the
latent space, in which each coordinate corresponds to one of the generative fac-
tors. Then the object represented in this way can be modified by changing the
value of a specific coordinate. But first, we need to determine which coordinate
handles the desired generative factor, which can be complex with a high vector di-
mension. In this paper, we propose to represent each generative factor as a vector
of the same dimension as the resulting representation. This is possible by using
Hyperdimensional Computing principles (also known as Vector Symbolic Archi-
tectures), which represent symbols as high-dimensional vectors. They allow us
to operate on symbols using vector operations, which leads to a simple and inter-
pretable modification of the object in the latent space. We show it on the objects
from dSprites and CLEVR datasets and provide an extensive analysis of learned
symbolic disentangled representations in hyperdimensional latent space.

1 INTRODUCTION

En
co

de
r

G
F 

Pr
oj

ec
tio

n

En
co

de
r

G
F 

Pr
oj

ec
tio

n

Cylinder
Red

Large
Metal

X coord.
Y coord.

Cylinder
Purple

Large
Metal

X coord.
Y coord.

Cylinder
Purple
Large
Metal
X coord.
Y coord.

Feature
Exchange

D
ec

od
er

Donor Image

Target Image

Reconstructed
Image

Figure 1: The target image and the donor image
are represented by an encoder network and gen-
erative factors projection (GF Projection) as a set
of high-dimensional vectors, each of which corre-
sponds to one of the generator factors in the data.
The same encoder is used for both the target and
the donor objects. The donor image differs from
the target image in terms of one of the genera-
tive factors and coincides with others. Further,
the vector corresponding to the selected genera-
tion factor is exchanged by the donor image vec-
tor in the Feature Exchange module. The decoder
reconstructs the target image with a given value of
the generative factor.

Good data representation for machine learning
algorithms is one of the key success factors
for modern approaches. Initially, the construc-
tion of good representations consisted of fea-
ture engineering, i.e., the manual selection, cre-
ation, and generation of such features that allow
the model to solve the main problem success-
fully. Although feature engineering is still used
in some areas, current models rely on learn-
ing representations from data (Bengio et al.
(2013)). At the same time, a good representa-
tion can be considered in several ways: proxim-
ity of representations for semantically related
objects (Mikolov et al. (2013)), identification of
common features in objects (Krizhevsky et al.
(2012)), preservation of a complex structure
with a decrease in dimension, and disentangle-
ment of representations (Higgins et al. (2017)).

In this paper, we consider disentangled repre-
sentations. Following the work in Eastwood &
Williams (2018), we define disentangled repre-
sentations as satisfying three criteria: 1) disentanglement, i.e., the representation should factorize
(disentangle) the underlying generative factors so that one variable capturing at most one factor; 2)
completeness, a single variable should capture i.e., each underlying generative factor; 3) informative-
ness, i.e., completeness of information the representation captures about the underlying generative
factors. The disentangled representation may potentially improve generalization and explainability
in many machine learning tasks: structured scene representation and scene generation (El-Nouby
et al. (2019)), reinforcement learning (Keramati et al. (2018)), reasoning (Yang et al. (2020)), and
object-centric visual tasks (Groth et al. (2018)).
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The main research on disentanglement is focused on obtaining representations expressed by a vector
in which each vector’s coordinate captures one generative factor (Chen et al. (2016); Higgins et al.
(2017)), i.e., by changing this coordinate, we can change the property of the represented object.
In this work, we propose a disentangled representation in which a vector of the same dimension
captures each generative factor as the resulting representation of the object. We call such a repre-
sentation a symbolic disentangled representation.

Our approach is based on the principles of Hyperdimensional Computing (HD or Vector Symbolic
Architecture — VSA) (Kanerva (2009); Kleyko et al. (2021b)), in which symbols are represented
by vectors of high and fixed dimensions. In VSA, the seed vectors, from which the description of
an object is formed and which characterize its features, are usually obtained by sampling from a
predetermined high-dimensional space. They are fixed and are not learned from data. VSA uses that
with an extremely high probability all seed vectors from high-dimensional spaces are dissimilar to
each other (quasi-orthogonal) Kleyko et al. (2021a), which allows us to reduce the manipulation of
the symbols to vector operations.

In our work, the vectors representing the feature value of an object are obtained by applying the at-
tention mechanism (Bahdanau et al. (2014)) over a set of fixed seed vectors (a codebook or an item
memory in terms of VSA) and the representation of the object obtained using the autoencoder. This
procedure allows the model to learn disentangled representations and edit objects in a controlled
manner by manipulating their latent representations for cases where only one object is represented
in the scene. We will demonstrate how the proposed model learns symbolic disentangled represen-
tations on modified dSprites (Matthey et al. (2017)) and CLEVR datasets (Johnson et al. (2017)).

The contributions of the paper are: 1) a new model is proposed that allows learning symbolic disen-
tangled representations based on a combination of attention over codebook vectors and the principles
of Hyperdimensional Computing; 2) learned representations allow us to edit the properties of objects
in a controlled and interpretable way by manipulating their representations in the latent space.

2 OBJECT REPRESENTATION IN THE LATENT SPACE

In this paper, we apply principles of VSAs to represent an object in latent space. VSA is a computing
framework that works with high-dimensional vectors (HD vectors). In most applications (Kleyko
et al. (2019); beim Graben et al. (2020); Kovalev et al. (2022)), to represent an object in high-
dimensional latent space (the dimension D of the space is typically greater than 1,000), random HD
vectors are sampled from that space. But some approaches learn vectors from data (Yilmaz (2015);
Osipov et al. (2021)). These vectors are called seed vectors.

HD vectors perform a distributed representation of information across all components. Thus, only
the entire vector could be interpreted, not individual components. It is different from the localist
representation, which modern disentangled representation learning approaches use, where a single
vector component potentially has a meaning. The nature of the vector space might be different that
results in binary (Kanerva (2009)), real (Gayler (1998)), or complex (Plate (2003); Komer et al.
(2019)) HD vectors. If an object is of a complex structure, then the resulting representation is ob-
tained by performing vector operations on the seed vectors defined for VSAs: addition + (bundling)
and multiplication ⊙ (binding). We describe these operations in more detail in the Appendix B.
Using these operations, we can represent any object generated by n underlying generative factors as
a set of attribute-value pairs (generative factor-value):

O = G1 ⊙ V1 +G2 ⊙ V2 + · · ·+Gn ⊙ Vn, (1)

where Gi is a i-th generative factor and Vi is its value.

Thus, the target (T ) object in Fig. 1 could be represented as:

T = Shape⊙ Cylinder + Color ⊙Red

+Size⊙ Large+Material ⊙Metal

+CoordX ⊙X + CoordY ⊙ Y,

(2)

where Shape, Color, Size,Material, Coordx, Coordy are underlying generative factors and
Cylinder,Red, Large,Metal,X, Y are corresponding values.
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In this work, to encode generative factors Gi, we use HD vectors that are generated during model
initialization by sampling from N (0, 1)D, where the normal distribution N (0, 1) with mean equal
to zero and variance equal to one, and D is the dimension of the space. These vectors do not change
during training and testing. We sample the number of vectors equal to the number of factors.

Vectors Vi representing the values of generative factors are obtained as follows (Fig. 2). For each
generative factor, seed vectors SGi

ℓ are sampled in the number of possible values of this factor Gi,
using the procedure described above. These vectors are stored in the codebook (item memory).
Thus, the model uses as many codebooks as there are generative factors in the data. Further, the
object is mapped in the latent space using the autoencoder. Then, using the Generative Factors
Projection (GF Projection), an intermediate value vector V ′

i is obtained. This vector is then fed
into the Generative Factor Representation (GF Representation) module, which uses the attention
mechanism (Bahdanau et al. (2014)) to represent the value vector Vi as a linear combination of seed
vectors from the codebook SGi

ℓ :

aℓ = softmax(
V ′
i Kℓ√
D

)ℓ, (3)

where softmax()ℓ — ℓ-th component, D — the dimension of a high-dimensional space, Kℓ —
projection of the ℓ-th seed vector SGi

ℓ from the codebook,

Vi = a1S
Gi
1 + a2S

Gi
2 + · · ·+ aℓS

Gi

ℓ . (4)

The obtained value vectors Vi are bound with generative factor vectors Gi and are summed together
in a High-Dimensional Representation (HD Representation) module. The resulting vector O is used
when decoding the object into an image.

3 EXPERIMENTS

In this work, we use paired datasets obtained from the data. The main idea of training and the process
of dataset generation are presented in Appendix C and D correspondingly. For all experiments, the
training signal is provided from the sum of image reconstruction errors (mean squared). The detailed
description of the architectures of the used modules is presented in Appendix E.

4 RESULTS
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Figure 2: Obtaining an HD representation of an
object.

We provide quantitative results that evaluate
the quality of the reconstruction of objects and
scenes. We use the FID metric (Heusel et al.
(2017)) for the CLEVR dataset and Intersection
over Union (IoU) for the dSprites dataset.

4.1 DSPRITES PAIRED

The model has reached the IoU value equal to
0.983. After training, we tested the possibility
of exchanging features between random images
(Fig. 3). The top left corner shows the two orig-
inal images (ellipse and heart). Just below, the
second line shows the result of their reconstruction. On the right, each image shows the result of
latent vector decoding after replacing one corresponding feature. The “shape” feature is replaced
correctly but with deformation. When “orientation” and “scale” are replaced, the main goal is ac-
complished, but the shape of the object is slightly distorted in the case of “orientation”.

On lines 3 and 4, the ellipse features are replaced one by one by the square features. Here we can
see that the “orientation” feature is strongly related to the “shape” feature, unlike the “scale”, “pos
x”, and “pos y” features, with which the images are restored relatively well. We explain this by the
symmetry features of the figures: the square, the oval, and the heart are symmetric when rotated by
pi/2, pi, and 2pi, respectively, while the possible angles of rotation are in [0, 2π].
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Figure 3: Image reconstruction of objects with
modified values of generative factors (yellow) for
dSprites paired dataset. The target object (red)
differs from the donor object (blue) in all factor
values.

In addition, the lower left corner of the im-
age shows that the image with the generative
combination excluded from the training sam-
ple (square with coordinate x > 0.5) is recon-
structed correctly. In both examples, the X and
Y coordinates are correctly transferred from the
donor image.
4.2 CLEVR1 PAIRED
Fig. 4 shows the process of exchanging
features between objects from the CLEVR1
paired dataset. The feature exchange between
random images works well with the “color”,
“size”, and “material” properties. In contrast
to the dSprites paired dataset, there are prob-
lems with reconstruction when changing coor-
dinates. The “shape” feature exchange works
well with respect to reconstructed images. The
mean FID metric for CLEVR1 paired dataset
for test set with batch size of 64 is 69.19.
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Figure 4: Image reconstruction of objects with
modified values of generative factors (yellow) for
CLEVR1 paired dataset. The target object (red)
differs from the donor object (blue) in all factor
values.

More qualitative results and visualization of the
learned symbolic disentangled representations
are presented in Appendix G. The ablation stud-
ies are presented in Appendix H.

5 CONCLUSION AND DISCUSSION
In this paper, we proposed a model that learns
symbolic disentangled representations using a
structured representation of an object in latent
space. This representation is based on the prin-
ciples of VSAs and is a superposition of HD
vectors that capture a single generative factor
in the data.

Unlike classical approaches based on VAE
(Kingma & Welling (2013)) or GAN (Goodfel-
low et al. (2014)), learned representations are
distributed, i.e. individual coordinates are not
interpretable (unlike localist representations).
Potentially, this allows us to reduce the change
in the properties of an object to manipulation
with its latent representation using vector oper-
ations defined in VSAs.

The limitation of the application of the pro-
posed model for real data is due to the fact that
it is necessary to know in advance the number
of generative factors. The generalization of the proposed model to the case of real data is an inter-
esting direction for further research.

Also, due to the use of distributed representations, there is difficulty in comparison with existing
models for disentangled views that use localist representations. However, establishing a common
metric for disentangled representations is still an unsolved problem, and exploring ways to compare
models with different representations (localist, distributed, hierarchical, and others) is a challenging
task.
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A APPENDIX — DISENTANGLED REPRESENTATION

Most of the methods for learning disentangled representations are based on either the VAE frame-
work Higgins et al. (2017); Burgess et al. (2018); Kim & Mnih (2018); Chen et al. (2018); Kumar
et al. (2018) or Adversarial Generative Networks (GAN) Goodfellow et al. (2014) framework Chen
et al. (2016); Lin et al. (2019); Nie et al. (2020).

In these approaches, they achieved the disentanglement by imposing additional restrictions on the
loss: introducing a β parameter to balance independence constraints with reconstruction accuracy
in β-VAE Higgins et al. (2017); by adding objective for capacity control in Burgess et al. (2018); by
factorizing the representations distribution in FactorVAE Kim & Mnih (2018); by decomposing the
evidence lower bound in β-TCVAE Chen et al. (2018); by minimising the covariance between the
latents in DIP-VAE Kumar et al. (2018); by maximizing the mutual information in InfoGAN Chen
et al. (2016); by introducing contrastive regularizer in InfoGAN-CR Lin et al. (2019); by adding
a mutual information loss to StyleGAN Karras et al. (2018) in Info-StyleGAN Nie et al. (2020).
In our approach, we do not impose additional specific restrictions on the loss, but use a structured
representation of the object in the latent space and a special learning procedure.

Some approaches impose additional restrictions based on group theory on existing VAE models
Yang et al. (2022) or propagate inductive regulatory bias recursively across the compositional fea-
ture space Chen et al. (2022), or provide a framework for learning disentangled representation and
discovering the latent space Ren et al. (2022).

In our work, we achieve disentanglement of representations using Hyperdimensional Computing
principles and representing generative factors as high-dimensional vectors.

B APPENDIX — VSAS VECTOR OPERATIONS

Here we explain vector operations defined for VSAs using an example of the Multiply-Add-Permute
Gayler (1998) implementation of VSAs that works with real vectors and that we use in this paper.
The exact realization of vector operations varies for different vector spaces while keeping computa-
tional properties.

Two main operations are addition and multiplication. The addition operation or bundling (denoted
as +) is an element-wise sum: A = B + C, where A,B,C are HD vectors. The resultant vector
is similar (in the sense of some similarity measure) to summand vectors but quasi-orthogonal (the
similarity is approximately equal to zero for a cosine similarity) to others. Semantically, bundling
represents a set of vectors and, correspondingly, a set of symbols.

The multiplication operation or binding (denoted as ⊙) is an element-wise multiplication of two HD
vectors: A = B⊙C, where A,B,C are HD vectors. It maps vectors B and C to another HD vector
A. The resultant vector is dissimilar (quasi-orthogonal) to multiplied and other HD vectors from the
vector space. Binding represents an attribute-value pair, an assignment of a value to a corresponding
attribute.

C APPENDIX — TRAINING IDEA

It is assumed that the object O depicted on the image I can be represented as a set of N generative
factors G(O) = {G1(O), G2(O), ..., GN (O)}, where Gi(O) = Vi, Vi ∈ VGi

, VGi
is a set of

possible values of a generative factor Gi.

Therefore, if we take two objects O1 and O2 and encode them into a set of generative factors G1 =

G(O1) and G2 = G(O2), with each value of a generative factor Gj
i represented by a vector pj,i in

some latent space, we want that the vectors p1,i = p2,i if G1
i = G2

i .

If this condition is met, then:

G1 = {Gj
i |j = 1} = G1′ =

= {Gj
i |j =

{
2 if G1

i = G2
i ,

1 if G1
i ̸= G2

i .
}

(5)
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If we reconstruct the original object O1 from the set of values of generative factors G1′, the result
of reconstructing O′

1 should not differ from the original object O1. In this way, we can construct
a learning model. Due to the fact that for each training example with objects O1 and O2, the
reconstruction possibility is symmetric for both objects, we can use two reconstructions at once O′

1
compared to O1, and O′

2 compare to O2. To make it easier for the model to identify the exchanged
feature, it is possible to generate examples with one different generative factor for synthetic data.

D APPENDIX — DATASET GENERATION

In this paper, two datasets generated from dSprites Matthey et al. (2017) and CLEVR Johnson et al.
(2017) were used to test the proposed approach.

D.1 DSPRITES PAIRED

dSprites is a dataset that contains 737280 procedurally generated 2D shapes (images of size 64×64)
with the following generative factors: shape (square, ellipse, heart), scale (6 values), orientation (40
values in [0, 2π]), x and y coordinates (32 values for each).

Each training example contains two images x1, x2 with generative factors (Gi
1, ..., G

i
5) and a feature

exchange vector e = (e1, ..., e5), where ei = 1− [G1
i = G2

i ] ([ ] is the Iverson bracket). Each of the
two images can be a donor for the other (Figure 1), and the feature exchange vector is used in the
latent representation stage to exchange the corresponding features.

For our training set, we sampled 100,000 pairs of unique images that differ by the value of one
generative factor. At the same time, we excluded from the training set images with shape = square
and x > 0.5, to check our model for compositional generalization as it was done in Montero et al.
(2022). The test set was sampled without restrictions and contained 30,000 pairs of unique images
that differ by a value of one generative factor and do not match the examples from the training set.
The resulting dataset we call dSprites paired (Fig. 5a).

D.2 CLEVR1 PAIRED

CLEVR contains images of 3D-rendered objects with the following generative factors: shape, size,
material type, color, x and y coordinates, and orientation (because the sphere and the cylinder are
symmetric in the XY plane, it is impossible to check the result when exchanging the ”orientation”
feature, so for all images orientation was set to zero and excluded from the list of generative factors).

We have modified the source generation code from the original dataset Johnson et al. (2017) to
create our training and test examples (10,000 and 1000, respectively). As in dSprites, each training
example contains two images x1, x2 and the feature exchange vector e we call CLEVR1 paired
(Fig. 5b) because the image contains one object. Camera position and lighting are random but fixed
for all images of the same training example.

We used a version of CLEVR with color/shape conditions (CoGenT) to test for compositional gener-
alization. The training set contains cubes that are gray, blue, brown, or yellow, red cylinders, green,
purple, or cyan, and spheres that can be any color. In the validation set cubes and cylinders have
opposite color palettes, and the test set contains all possible combinations. Additionally, the size of
the generated images is 128× 128 (default is 320× 240), and there is no restriction on overlapping
objects.
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Figure 5: Examples of image pairs from the training sample of datasets: a) dSprites paired; b)
CLEVR1 paired.

E APPENDIX — MODEL ARCHITECTURE

We train the model using the AdamW optimizer (Loshchilov & Hutter (2017)) with a learning rate
of 2.5e− 5 with other parameters set to default. We further make use of the learning rate scheduler
OneCycleLR (Smith & Topin (2017)) with the percentage of the cycle spent increasing the learning
rate set to 0.2. For dSprites the number of epochs was 600 with a batch size of 512 and for CLEVR1,
1000 and 64, respectively.

In addition to the autoencoder (AE) loss, we use three reconstruction losses (MSE) to control the
quality of the image restoration:

LTotal = LAE + LRec = LAE+

+MSE(S, Ŝ) +MSE(S′, Ŝ′) +MSE(Od, Ôd),
(6)

where S — an original scene, Ŝ — a reconstructed original scene, S′ — a scene with donor, Ŝ′ —
a reconstructed scene with donor, Od — a donor object, Ôd — a reconstructed donor object.

Table 1: Architecture of the CNN encoder for the experiments on dSprites paired and CLEVR1
datasets. An asterisk means that the layer is only used in the model for CLEVR1 paired.

Layer Channels Activation Params

Conv2D 4 × 4 64 ReLU stride: 2, pad: 1
Conv2D 4 × 4 64 ReLU stride: 2, pad: 1
Conv2D 4 × 4 64 ReLU stride: 2, pad: 1
Conv2D 4 × 4 64 ReLU stride: 2, pad: 1
Conv2D 4 × 4 * 64 ReLU stride: 2, pad: 1
Linear 1024 ReLU -
Linear 1024 - -
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Table 2: Architecture of the CNN decoder for the experiments on dSprites paired and CLEVR1
datasets. An asterisk means that the layer is only used in the model for CLEVR1 paired.

Layer Channels Activation Params

Linear 1024 GELU -
Linear 1024 GELU -
ConvTranspose2D 4 × 4 64 GELU stride: 2, pad: 1
ConvTranspose2D 4 × 4 64 GELU stride: 2, pad: 1
ConvTranspose2D 4 × 4 64 GELU stride: 2, pad: 1
ConvTranspose2D 4 × 4 * 64 GELU stride: 2, pad: 1
ConvTranspose2D 4 × 4 64 Sigmoid stride: 2, pad: 1

Table 3: Architecture of the attention layer.

Layer Channels Activation Params

K proj: Linear 1024 - -
Q proj: Linear 1024 - -
V proj: - - - -

F APPENDIX — EVALUATION

Popular disentanglement metrics such as BetaVAE score Higgins et al. (2017), DCI disentanglement
Eastwood & Williams (2018), MIG Chen et al. (2018), SAP score Kumar et al. (2018), and Factor-
VAE score Kim & Mnih (2018) are based on the assumption that disentanglement is achieved by
having each individual vector coordinate capture one generative factor in the data, i.e. by changing
the value in this coordinate it is possible to change the property of the object. Such representations
are localist.

Due to the fact that in Hyperdimensional Computing, the representations are distributed, that is, the
whole vector captures a certain generative factor, and not any of its individual coordinates, current
metrics are not suitable for assessing the disentanglement of the proposed model representations.
Therefore, the main results are presented qualitatively.

However, we provide quantitative results that evaluate the quality of the reconstruction of objects
and scenes. We use the FID metric Heusel et al. (2017) for the CLEVR dataset and Intersection over
Union (IoU) for the dSprites dataset.
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G APPENDIX — QUALITATIVE RESULTS AND VISUALIZATIONS

In this section, we provide additional examples of object modification for dSprites (Fig. 6) and
CLEVR (Fig. 7) datasets, as well as reconstructed images from individual feature vectors for
dSprites (Fig. 8) and CLEVR (Fig. 9) datasets.

image donor orient posX posY scale shape image donor

image
reconstructed

with donor
features

donor
reconstructed

with image
features

Figure 6: Examples of image reconstruction of objects from the dSprites paired dataset with mod-
ified values of generative factors. The target object (red) differs from the donor object (blue) in all
factor values. The yellow frames represent the reconstruction of the target image with one of the
values of the generative factor replaced by the value of the donor object: shape, position x (pos x),
position y (pos y), orientation, and scale.
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reconstructed
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features

image
reconstructed
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features

image donor
donor

reconstructed
with image

features

image
reconstructed

with donor
features

Figure 7: Examples of image reconstruction of objects from the CLEVR1 paired dataset with mod-
ified values of generative factors.

H APPENDIX — ABLATION STUDIES

Since the model uses randomly sampled seed vectors that do not change during training, we tested
the stability of the model for the dSprites dataset on 5 seeds. We got a mean of IoU is equal to 0.981
with a variance of 0.002.

An important hyperparameter of the model is the dimension D of the latent space. We checked how
changing this value affects the IoU metric for dSprites paired and FID metric for CLEVR1 paired
(Table 4). The results were obtained on 3 seeds.

To test the idea of exchanging several features at once, we did an experiment with 1-4 exchanges
simultaneously and obtained an IoU metric equal to 0.989.

To test how the attention mechanism works in conjunction with the VSA, we set up the following ex-
periment. For both datasets on the validation split, for each generative factor Gi we checked how the
vector taken with the highest attention coefficient corresponds to the vector obtained by unbinding
the latent scene vector O with the corresponding placeholder pi for each of tested latent dimensions
(Table 5, Table 6). Visualizations of these tables are shown in Fig. 10 and Fig. 11 correspondingly.
The number of training epochs for this experiment is less than for the main experiment: 200 for
dSprites paired and 600 for CLEVR1 paired.
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Table 4: Metrics for both dSprites paired and CLEVR1 paired datasets calculated with different
latent dimension D (mean ± stddev for 3 seeds).

Latent dim. dSprites paired (IOU) CLEVR1 paired (FID)
16 0.940±0.013 109.88±8.05
32 0.945±0.009 100.52±0.20
64 0.958±0.006 96.97±1.06
128 0.963±0.003 96.12±0.54
256 0.965±0.002 90.21±1.08
512 0.970±0.002 85.14±2.80

1024 0.976±0.001 80.70±0.68
2048 0.984±0.001 79.07±0.86

Table 5: Attention-unbinding accuracy metric for dSprites paired.
Latent dim. shape scale orientation posX posY

16 0.36±0.08 0.23±0.31 0.09±0.06 0.04±0.03 0.01±0.01
32 0.61±0.01 0.18±0.18 0.11±0.02 0.03±0.02 0.03±0.02
64 0.41±0.12 0.32±0.12 0.17±0.06 0.15±0.04 0.05±0.02

128 0.30±0.09 0.47±0.10 0.36±0.02 0.14±0.02 0.17±0.08
256 0.24±0.19 0.53±0.11 0.37±0.04 0.20±0.04 0.09±0.03
512 0.22±0.09 0.52±0.16 0.36±0.08 0.18±0.06 0.19±0.06
1024 0.52±0.15 0.70±0.07 0.26±0.05 0.33±0.14 0.29±0.06
2048 0.69±0.04 0.60±0.18 0.45±0.02 0.37±0.08 0.39±0.07

Table 6: Attention-unbinding accuracy metric for CLEVR1 paired.
Latent dim. shape size material color posX posY

16 0.52±0.33 0.51±0.06 0.42±0.41 0.27±0.26 0.04±0.02 0.04±0.05
32 0.44±0.08 0.58±0.13 0.55±0.14 0.19±0.08 0.06±0.02 0.09±0.07
64 0.58±0.11 0.73±0.18 0.65±0.24 0.18±0.01 0.08±0.03 0.10±0.06
128 0.54±0.09 0.91±0.03 0.59±0.04 0.45±0.09 0.17±0.05 0.25±0.09
256 0.63±0.06 0.94±0.04 0.71±0.06 0.43±0.06 0.20±0.10 0.33±0.06
512 0.79±0.07 0.96±0.02 0.80±0.04 0.52±0.05 0.28±0.09 0.39±0.12

1024 0.75±0.04 0.98±0.01 0.89±0.07 0.64±0.03 0.37±0.10 0.60±0.03
2048 0.78±0.05 0.96±0.01 0.95±0.01 0.70±0.02 0.65±0.02 0.55±0.10

I APPENDIX — ADDITIONAL DISCUSSION

To train the proposed model, it is necessary to have an assumption about the number of generative
factors in the data since this is a model hyperparameter. This is not a limitation when working with
synthesized data, such as game and simulation environments, when the number of generative factors
is known in advance. However, working with realistic datasets may require additional analysis of the
data itself and determining the level of the presentation hierarchy that is worth using. For example,
you can describe a person’s face in terms of hairstyles and hair colors, nose shapes, eye colors, and
so on, or you can go down the hierarchy of representation and, for example, describe the shape of a
nose in terms of tangent inclination angles to the line of the nose.
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Figure 8: Visualization of image reconstruction from a single feature vector from a codebook (bound
to a placeholder value) for the dSprites dataset. It shows that a complete image is not reconstructed
from a single vector. This indicates that the vector represents a separate property of the object. This
is particularly evident when restoring position. For example, it shows on the bottom lines, where
reconstructing Pos Y, the line with the fixed position Y is reconstructed.
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Figure 9: Visualization of image reconstruction from a single feature vector from a codebook (bound
to a placeholder value) for the CLEVR dataset. It shows that a complete image is not reconstructed
from a single vector. This indicates that the vector represents a separate property of the object.
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Figure 10: Attention-unbinding accuracy metric for dSprites paired.

Figure 11: Attention-unbinding accuracy metric for CLEVR1 paired.
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