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ABSTRACT

Remarkable progress has been made on automated reasoning with natural text, by
using Large Language Models (LLMs) and methods such as Chain-of-Thought
prompting and Selection-Inference. These techniques search for proofs in the
forward direction from axioms to the conclusion, which suffers from a combi-
natorial explosion of the search space, and thus high failure rates for problems
requiring longer chains of reasoning. The classical automated reasoning litera-
ture has shown that reasoning in the backward direction (i.e. from the intended
conclusion to supporting axioms) is significantly more efficient at proof-finding.
Importing this intuition into the LM setting, we develop a neuro-symbolic Back-
ward Chaining algorithm, called LAMBADA, that decomposes reasoning into four
sub-modules, that are simply implemented by few-shot prompted LLM inference.
We show that LAMBADA achieves sizable accuracy boosts over state-of-the-art
forward reasoning methods on two challenging logical reasoning datasets, partic-
ularly when deep and accurate proof chains are required.

1 INTRODUCTION

Automated reasoning, the ability to draw valid conclusions from explicitly provided knowledge, has
been a fundamental goal for AI since its early days (McCarthy, 1959; Hewitt, 1969). Furthermore,
logical reasoning, especially reasoning with unstructured, natural text is an important building block
for automated knowledge discovery and holds the key for future advances across various scientific
domains. While in recent years tremendous progress has been made towards natural language under-
standing thanks to pre-trained language models (LMs) (Brown et al., 2020; Chowdhery et al., 2022),
the performance of these models for logical reasoning still lags behind (Rae et al., 2021; Creswell
et al., 2022; Valmeekam et al., 2022) compared to the advancements in other areas such as reading
comprehension and question-answering.

Facts:
1. Rough and cold that is what they 

say about Blue Bob. 
2. Eric, who is relatively young, is 

also pretty big and tends to be 
cold. 

3. Fred is green and cold too. 
4. For being so cold, it's good Harry 

can remain nice.
Rules:
1. Rough, cold people are blue. 
2. Big, kind folks are green ones. 
3. If a person is big, rough, and cold, 

they are also red. 
4. Most round and cold people are 

often rough. 
5. Cold, young people are also 

certain to be rough people. 
6. An individual who is big, red and 

young is also going to be a nice 
individual.

Goal:
● Eric is nice.
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Figure 1: The search trace of LAMBADA on an exam-
ple from ParaRules (the Sign Agreement and failed Fact
Check modules are omitted for brevity).

While many problems benefit from LM
scaling, scaling has been observed to
provide limited benefit for solving com-
plex reasoning problems. For exam-
ple, Creswell et al. (2022) observed that
for the Gopher family of LMs (Rae
et al., 2021), the scaling law for logic-
based tasks is significantly worse than
for other language tasks. Moreover,
while finetuning initially seemed to en-
able logical reasoning in LMs (Clark
et al., 2020; Tafjord et al., 2021), fur-
ther exploration revealed that finetuned
LMs mostly exploit spurious correla-
tions (e.g., the correlation between the
number of rules and the label) as op-
posed to learning to reason (Zhang et al.,
2022; Schlegel et al., 2022; Liu et al.,
2022). Recently, prompting strategies
such as Chain-of-Thought (Wei et al.,
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2022) and Scratchpad (Nye et al., 2022) have found some success for such tasks, although they
have been also shown to struggle with proof planning for more complex logical reasoning problems
(Saparov & He, 2022).

One solution to the aforementioned problems is a neuro-symbolic approach that integrates the
strength and reliability of classical AI models in logical reasoning with LMs (Garcez & Lamb,
2020; Marcus, 2020). In the classic literature, there are two major approaches to logical reasoning
(Poole & Mackworth, 2010):

1. Forward Chaining (FC) where one starts from the facts and rules (“theory”), and iterates between
making new inferences and adding them to the theory until the goal statement can be proved or
disproved,

2. Backward Chaining (BC) where one starts from the goal and uses the rules to recursively decom-
pose it into sub-goals until the sub-goals can be proved or disproved based on the facts.

Previous approaches to reasoning with LMs mostly incorporate elements of FC into LMs (Tafjord
et al., 2021; Creswell et al., 2022). FC requires selecting a subset of facts and rules from the entire
theory which might be difficult for an LM as it requires a combinatorial search over a large space.
Moreover, deciding when to halt and declare failure to prove is challenging in FC (Creswell et al.,
2022), sometimes requiring specialized modules trained on intermediate labels (Creswell & Shana-
han, 2022). Indeed, the classic automated reasoning literature is heavily weighted towards BC or
goal-directed strategies for proof-finding.

In this paper, we argue and show experimentally that BC is better suited for text-based deductive
logical reasoning, as it does not require a combinatorial search for subset selection and there are
more natural halting criteria for it. We develop a hybrid LAnguage Model augmented BAckwarD
chAining technique (LAMBADA), where BC drives the high-level proof planning, and the LM per-
forms the textual understanding and individual reasoning steps. We conduct experiments with chal-
lenging datasets for LM reasoning containing examples with natural text, requiring proof chains of
up to 5 hops in length, and examples where the goal can neither be proved nor disproved from the
provided theory. We show that LAMBADA achieves substantially higher deductive accuracy, and is
considerably more likely to generate valid reasoning chains compared to other techniques which find
correct conclusions with spurious proof traces, while also being more query efficient than other LM-
based modular reasoning approaches. Our results strongly indicate that future work on reasoning
with LMs should incorporate backward chaining or goal-directed strategies.

2 LAMBADA: LANGUAGE MODEL AUGMENTED BACKWARD CHAINING

Algorithm 1 LAMBADA

Input: Theory C = (F ,R), Goal G,
Max-Depth D

1: factCheckResult = FactCheck(G, F)
2: if factCheckResult ̸= UNKNOWN

then
3: return factCheckResult
4: if D == 0 then
5: return UNKNOWN
6: Rs = RuleSelection(G, R)
7: for r ∈ Rerank(Rs) do
8: G = GoalDecomposition(r,G)
9: if ProveSubgoals(C, G, D) then

10: if SignAgreement(r, G) then
11: return PROVED
12: else
13: return DISPROVED
14: return UNKNOWN

A theory consists of a set of facts and a set of rules. We
focus on performing automated reasoning over natural
language assertions such as ‘‘Nice people are red’’
that are coherent but not necessarily grounded in reality.
An example theory with fictional characters and rules is
demonstrated in Figure 1. Based on the theory, one may
want to prove the goal ‘‘Eric is nice’’.

Figure 1 also shows an example of backward chaining
(BC) applied to a theory to prove a goal. Initially, BC
verifies if the goal can be proved or disproved based on
the facts (this step is omitted from the figure). Since
none of the facts prove or disprove the goal, BC next
selects a rule (Rule6) that can be applied to break down
the goal into sub-goals. Applying Rule6 breaks down
the goal into three sub-goals. BC makes recursive calls
to prove each sub-goal. The algorithm continues un-
til either a halting criterion is reached (e.g., reaching a
certain depth in search), or a sub-goal can no longer be
broken down (e.g., the left sub-tree under ‘‘Eric is
rough’’), or all sub-goals are proved (e.g., the right sub-tree under ‘‘Eric is rough’’). Depend-
ing on the theory and the goal, the output of BC is either PROVED, DISPROVED, or UNKNOWN.
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2.1 THE LAMBADA ALGORITHM

To enable applying BC for text-based reasoning, we introduce four LM-based modules: Fact Check
(given a set of facts and a goal predicts if the goal can be proved, disproved, or neither), Rule
Selection (given a set of rules and a goal, determines which rules can be applied to break the goal
into sub-goals), Goal Decomposition (given a rule and goal, breaks down the goal into sub-goals
based on the rule), and Sign Agreement (given a goal and a rule, predicts if the sign of the goal agrees
with the sign of the consequent of the rule). Each module is implemented by showing relevant in-
context demonstrations to a pretrained LM. Algorithm 1 provides a high-level description of how
these modules can be integrated with BC to enable text-based logical reasoning (the function calls
corresponding to LM modules are color-coded).

Algorithm 2 ProveSubgoals
Input: Theory C = (F ,R), Sub-Goals G,
Max-Depth D

1: for G in G do
2: result = LAMBADA(C, G, D-1)
3: if result ̸= PROVED then
4: return False # Assuming conjunction

return True

LAMBADA can be understood as a depth-first
search algorithm over the facts and the rules. It
takes as input a theory C = (F ,R), a goal G, and
a depth D that defines a halting criterion based on
the maximum allowed depth for the search. Ini-
tially, the algorithm uses the Fact Check module
to check if G can be proved or disproved using the
facts. If this is the case, the algorithm stops and
returns the result. Otherwise, the algorithm checks
the depth D: if D = 0, then the algorithm stops and returns UNKNOWN. Otherwise, the algorithm
proceeds with applying rules. The Rule Selection module is used to identify the rules Rs from R
whose consequent unifies with G. For each selected rule, the algorithm uses the Goal Decomposition
module to decompose G into a set of sub-goals G that need to be proved and checks whether those
sub-goals can be proved by making recursive calls to the algorithm (with reduced depth). If the sub-
goals can be proved, then the algorithm uses the Sign Agreement module to check whether the sign
of the rule consequent agrees or disagrees with the sign of G. If it does, then the algorithm returns
PROVED and otherwise DISPROVED. If there is no rule for which the sub-goals can be proved, then
UNKNOWN is returned.

3 EXPERIMENTS AND RESULTS

All experiments are based on the PaLM 540B language model (Chowdhery et al., 2022).

Baselines: We compare against two baselines: Chain of Thought (CoT) (Wei et al., 2022), a popular
neural approach based on demonstrating chains of inference to the LM within the in-context prompt,
and Selection-Inference (SI) (Creswell et al., 2022), a strong modular reasoning approach.

Datasets: We experiment with challenging logical reasoning datasets namely ProofWriter (Tafjord
et al., 2021), PrOntoQA (Saparov & He, 2022) and ParaRules (Tafjord et al., 2021). ProofWriter
and PrOntoQA contain sub-categories based on the (maximum) number of reasoning hops required.
We report results for each sub-category separately. ParaRules is a version of ProofWriter where
the theory is rewritten by crowdworkers for increased diversity and naturalness (see an example if
Figure 1). To reduce experimentation cost, for ProofWriter we use the first 1000 examples from the
test set (OWA category) and for ParaRules we use the first 500 examples1.

Label Accuracy The results are reported in Figure 2(a)-(d).2 We observe that LAMBADA signifi-
cantly outperforms the baselines, especially on ProofWriter-PUD which contains UNKNOWN labels
(44% relative improvement compared to CoT and 56% compared to SI on Depth-5), the higher
depths of PrOntoQA (37% relative improvement compared to CoT and 113% compared to SI on
Depth-5), and the ParaRules dataset (43% relative improvement compared to CoT). These results
overall show the merit of LAMBADA for logical reasoning. Furthermore, we highlight that the rea-
soning capacity of LAMBADA robustly generalizes to more naturalistic expressions, as demonstrated
by the high accuracy on ParaRules, which is exactly the desired outcome of combining the strengths
of an LM and a reasoning algorithm.

1ParaRules had some minor quality issues that we manually fixed before experimentation.
2Due to the low performance of SI on the other datasets and its high number of LM calls, for ParaRules we

only compared LAMBADA against CoT.
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Figure 2: Prediction accuracy results on (a) ProofWriter (b) PrOntoQA, and (c) ParaRules datasets.
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Figure 3: (a) Proof accuracy comparison. (b) Forward chaining becomes progressively harder. (c)
LAMBADA is more inference call efficient than SI.

Proof Accuracy: We compared LAMBADA to CoT in terms of proof accuracy when the label is
predicted correctly. To this end, we randomly selected 50 examples from depth-5 of the ProofWriter
dataset where each model predicted the label correctly and we manually verified the proofs. The
results in Figure 3(a). show that LAMBADA produces substantially more accurate proofs than CoT.

Inefficacy of Forward Chaining: SI is based on forward chaining and its selection module requires
a combinatorial search to find the right subset of facts and rules, and the search space becomes
progressively larger in each iteration of the algorithm as new inferences are added to the theory.
To verify whether the increase in the search space makes forward chaining progressively harder,
we measured the success rate of the k-th inference of SI for different values of k on Depth-5 of
PrOntoQA. According to the results in Figure 3(b), the success rate indeed decreases significantly
in the later inferences when the size of the theory (and hence the search space) increases. We also
find SI (and more generally) suffer severely from duplicate inference generation where running the
inference multiple times results in producing the same inference over and over again.

Number of Inference Calls: Another advantage of LAMBADA is its comparative efficiency com-
pared to other approaches that require multiple inference calls to the LM. In Figure 3(c), we compare
the average number of LM inference calls made per example, for different depths of ProofWriter.
We observe that LAMBADA requires significantly fewer calls, especially at higher depths.

Qualitative Analysis: In Figure 1, we show the search trace created by LAMBADA for an example
from ParaRules, where the answer was predicted correctly. From the figure, one can see how back-
ward chaining helps LAMBADA effectively search and create the reasoning chain and how the LM
helps fact checking, rule selection, goal decomposition, and sign agreement checking.

Conclusion: We developed LAMBADA, a neuro-symbolic algorithm for reasoning in natural lan-
guage that combines the capacity of LMs to handle naturalistic text with the backward chaining
algorithm for high-level reasoning. We showed that LAMBADA achieves significant improvements
over competitive approaches on challenging benchmarks. We believe our key insight on the effi-
cacy of neuro-symbolic reasoning with bacward chaining and LMs is widely applicable and can be
adapted to other NLP tasks where multi-step inference may be required.

4



ICLR 2023 - NeSy-GeMs Workshop

REFERENCES

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. PaLM:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Peter Clark, Oyvind Tafjord, and Kyle Richardson. Transformers as soft reasoners over language.
arXiv preprint arXiv:2002.05867, 2020.

Antonia Creswell and Murray Shanahan. Faithful reasoning using large language models. arXiv
preprint arXiv:2208.14271, 2022.

Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Exploiting large lan-
guage models for interpretable logical reasoning. arXiv preprint arXiv:2205.09712, 2022.

Artur d’Avila Garcez and Luis C Lamb. Neurosymbolic ai: the 3rd wave. arXiv preprint
arXiv:2012.05876, 2020.

Carl Hewitt. Planner: A language for proving theorems in robots. In Proceedings of the 1st Inter-
national Joint Conference on Artificial Intelligence, IJCAI’69, pp. 295–301, San Francisco, CA,
USA, 1969. Morgan Kaufmann Publishers Inc.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. arXiv preprint arXiv:2210.10749, 2022.

Gary Marcus. The next decade in ai: four steps towards robust artificial intelligence. arXiv preprint
arXiv:2002.06177, 2020.

John McCarthy. Programs with common sense. In Proceedings of the Teddington Conference on the
Mechanization of Thought Processes, pp. 75–91, London, 1959. Her Majesty’s Stationary Office.
URL http://www-formal.stanford.edu/jmc/mcc59.html.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and Au-
gustus Odena. Show your work: Scratchpads for intermediate computation with language mod-
els. In Deep Learning for Code Workshop, 2022. URL https://openreview.net/forum?id=
HBlx2idbkbq.

David L Poole and Alan K Mackworth. Artificial Intelligence: foundations of computational agents.
Cambridge University Press, 2010.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
of chain-of-thought. arXiv preprint arXiv:2210.01240, 2022.

Viktor Schlegel, Kamen V Pavlov, and Ian Pratt-Hartmann. Can transformers reason in fragments
of natural language? arXiv preprint arXiv:2211.05417, 2022.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. ProofWriter: Generating implications, proofs, and
abductive statements over natural language. In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pp. 3621–3634, Online, August 2021. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2021.findings-acl.317. URL https://aclanthology.org/
2021.findings-acl.317.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Large lan-
guage models still can’t plan (a benchmark for llms on planning and reasoning about change).
arXiv preprint arXiv:2206.10498, 2022.

5

http://www-formal.stanford.edu/jmc/mcc59.html
https://openreview.net/forum?id=HBlx2idbkbq
https://openreview.net/forum?id=HBlx2idbkbq
https://aclanthology.org/2021.findings-acl.317
https://aclanthology.org/2021.findings-acl.317


ICLR 2023 - NeSy-GeMs Workshop

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang, and Guy Van den Broeck. On the
paradox of learning to reason from data. arXiv preprint arXiv:2205.11502, 2022.

6


	Introduction
	Lambada: Language Model Augmented Backward Chaining
	The Lambada Algorithm

	Experiments and Results

