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ABSTRACT

Symbolic regression (SR) is the problem of learning a symbolic expression from
numerical data. Recently, deep neural models showed competitive performance
compared to more classical Genetic Programming (GP) ones. Unlike their GP
counterparts, they are trained to generate expressions from datasets given as context.
This allows them to produce accurate expressions in a single forward pass at test
time. However, they usually do not benefit from search abilities, which results
in low results compared to GP on out-of-distribution datasets. In this paper, we
propose a novel method which provides the best of both worlds, based on a
Monte-Carlo Tree Search procedure using a context-aware neural mutation model,
which is initially pre-trained to learn promising mutations, and further refined
from successful experiences in an online fashion. The approach demonstrates
state-of-the-art performance on the well-known SRBench benchmark.

1 INTRODUCTION

Symbolic Regression (SR) is the problem of simultaneously finding the structure (operators, variables)
and optimising the parameters (constants) of an expression that describes experimental data in an
interpretable manner. SR can produce human-readable expressions that are particularly useful in
natural sciences, e.g., materials sciences (Wang et al., 2019; Kabliman et al., 2021) or physics
(Schmidt & Lipson, 2009; Vaddireddy et al., 2020; Sun et al., 2022). Unfortunately, SR is intractable,
because it entails composing inherently discrete objects (i.e., expression terms) to form a best-fitting
expression (Virgolin & Pissis, 2022). Thus, typical approaches are heuristic. A famous example is
Genetic Programming (GP), which searches by evolving random expressions (Poli et al., 2008).

Lately, there has been a growing interest in the SR community for approaches based upon neural
networks (NNs). For example, Udrescu & Tegmark (2020) use NNs to explicitly detect data properties
(e.g., symmetries in the data) useful to reduce the search space of SR. Other approaches, which we
group together under the name of Deep Generative Symbolic Regression (DGSR), use NNs to learn
to generate expressions. Deep Symbolic Regression (DSR) by Petersen et al. (2019) uses an NN to
produce expressions with policy gradients and, similar to GP, faces a tabula rasa setup of the problem:
for any new dataset, DSR starts from scratch. On the other hand, other DGSR approaches exist that
are inductive: they are pre-trained to predict an expression in a single forward pass for any new
dataset, by feeding the dataset as input tokens (Biggio et al., 2021; Valipour et al., 2021; Kamienny
et al., 2022). This type of DGSR approaches have the appeal of generating expressions extremely
quickly. However, their lack of a search component makes them unable to improve for the specific
dataset at hand. This aspect can be particularly problematic when the given data is out-of-distribution
compared to the synthetic data the NN was pre-trained upon.

In this paper, we seek to overcome the limitations of inductive DGSR, by proposing a synergistic
combination with Monte-Carlo Tree Search (MCTS) to build a search tree of expressions. A
mutation policy, parameterized similarly to DGSR, is responsible for producing mutations that expand
expressions from the search tree. A selection policy prioritizes which expression to mutate next, by
trading-off between exploration (low number of visits) and exploitation (most promising expressions)
using a critic network. The mutation policy first undergoes a pre-training phase. Then, both the
mutation policy and the critic network are updated in online fashion, by leveraging results from search
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trials on new provided datasets. We evaluate our method on the SRBench benchmark (La Cava et al.,
2021) and show that it achieves state-of-the-art performance by discovering expressions that are both
simple and accurate.

2 METHOD

In this work, we see the learning process as building a tree, that we call search tree. Each node of the
search tree corresponds to an expression f , and edges between nodes represent mutations. We present
here the two ingredients of our method, the mutation policy respectively in charge of expanding
expressions and the MCTS policy in charge of selecting which expression to mutate.

2.1 MUTATION POLICY

Our search process relies on a mutation policy Mθ, a distribution over promising mutations of a given
expression f ∈ F . Note that F is the space of possible expressions, which in SR is implicitly defined
by the choice of expression terms to be combined (e.g., +,−,×,÷, sin, cos, . . . , x1, x2, . . . ). We
represent expressions with trees (not to be confused with the search tree of MCTS), see Figure 1.

Definition of Mθ. We define mutations as transformations that can be applied on any node of a
given expression tree. Table 1 contains the list of considered transformations, where A stands for
an existing node of the expression tree and B stands for a new expression to be included in the tree.
The −→ symbol stands as replacement operation (e.g., A −→ A + B means that node A from f is
replaced by a new addition node with A as its left child and B its the right one). Thus, a mutation is a
triplet < A, op,B >, where A is a node index from the considered expression (i.e., A ∈ [[0, k]] for an
expression that contains k nodes), op is an operation from Table 1 and B is a new (sub-)expression
that needs to be generated. A constant optimization step, detailed in Appendix F, can happen after
the mutation. We call mutation size the size of the expression B.

The mutation policy Mθ provides a distribution over possible mutations. Rather than constraining B
to be generated randomly, we parameterize Mθ(D, f, θ) following the transformer-based approach
by Kamienny et al. (2022), conditioning on an additional input f ∈ F , to decode a tokenized version
of < A, op,B > where A is expressed by the index on the expression tree where the mutation is
applied. While this may allow to output an invalid mutation expression, this happens very rarely in
practice as shown in Appendix E, thanks to an effective pre-training of the policy (described below).
Our mutation distribution is different from those that are commonly used in GP-based approaches, in
that the latter are not conditioned on D nor parameters (i.e., they are not updated via learning), and
they can also make expressions smaller, whereas ours strictly enlarge them. This way, in our MCTS
approach (Section 2.2), searching in depth means exploring larger expressions.

Figure 1: Given a starting ground-truth expression as a tree, we procedurally dismantle the tree until no node is
left. This is done by, at each step (red arrows), a) picking a node (dashed contour), b) removing the picked node
and, if the operator is binary, additionally remove the subtree rooted in one of the two child nodes B, c) adding
an edge (black dotted line) between the parent node and the remaining child node A to obtain a well-formed
expression. When the picked node is the root node, the entire tree is removed. Then, we train the mutation model
to assemble the tree back via subsequent mutations (green arrows), which revert the dismantling process.

Pre-training of Mθ. Our mutation policy Mθ learns to produce intermediate mutations (in order
to work within a search algorithm) and not the final expression in one shot like existing DGSR
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approaches. Thus, Mθ requires a novel pre-training process. To that end, pre-training data is first
generated from a simulator as labeled examples (dataset & ground-truth expression with up to 10
features), similarly to Biggio et al. (2021); Kamienny et al. (2022). Next, given a ground-truth
expression f∗, we extract a sequence of mutations [ml]≤L that iteratively map the empty expression
f (0) to the final expression f∗. As illustrated in Figure 1, starting from the ground-truth expression
f∗, we deconstruct f∗ by procedurally removing a node (if the node is binary, also a child subtree B)
from the current f until we get to f (0). After reversing this sequence, we obtain a training sequence
of expressions and mutations f (0) m1−−→ f (1) m2−−→ f (2) m3−−→ . . .

mL−−→ f (L) = f∗. After tokenization,
given inputs f (l−1) and D, mutation ml serves as target for the pre-training process. We use a
transformer network trained as a sequence-to-sequence encoder-decoder, using a cross-entropy loss
and teacher-forcing as done by Kamienny et al. (2022).

2.2 MCTS SAMPLING

Following Lample et al. (2022), our MCTS is made of three steps, that are iteratively repeated until a
given budget of iterations is exhausted: 1) Selection, 2) Expansion, 3) Back-propagation (explained
below). Additionally, our MCTS uses a critic network Cψ . This NN shares the same structure of Mθ,
except for having an additional head that is trained during the search to learn to prioritize promising
expressions to mutate.

Selection The selection step of MCTS aims at following a path in the search tree, from its root to a
leaf node, that trades off between exploration and exploitation. Following Silver et al. (2016), at each
new node f , we select its child f ′ that maximizes:

V (f ′) + puctE(f ′)Mθ(f
′|f,D, θ) (1)

with E(f ′) =

√∑
f′∈child(f)N(f ′)

1+N(f ′) . puct ∈ R+ is the exploration coefficient, N(f) is the number of
times f was selected so far during the search, and V (f) is an estimate of the expected value of the
expression, expressed as v(f)/N(f), with v(f) accumulating values from the nodes that descend
from f in the tree search.

Expansion Once the selection step reaches a leaf f of the tree, this leaf is expanded to produce
child nodes by applying K mutations {mk}k≤K sampled from Mθ(D, f, θ) to f . This leads to
modified expressions {f ′

k}k≤K . For each k ≤ K, we add a node f ′
k to the search tree, as well as

an edge between f ′
k and f , labeled mk. Each of these new nodes f are evaluated to check whether

they reach a sufficient R2 accuracy on the dataset. We concluded from preliminary experiments that
considering f∗ to be satisfactory if R2 ≥ 0.99 performed best as it provided high-quality samples
while dramatically reducing search times compared to perfect fitting. Nodes that solve the problem
obtain a value v(f) = 1. Others obtain an estimate from the critic network: v(f) = Cψ(D, f).

Back-Propagation After each expansion, the value of every ancestor f ′ of any new node f is
updated as V (f ′) ← V (f ′) + v(f). If at a given expansion, there exists a satisfactory expression
f∗ (e.g. a terminal node), we extract the sequence of (f (τ),mt) leading to f∗. If multiple such
sequences exist, we select the one with the smallest number of mutations. Then, we early-stop the
process after back-propagating the corresponding values. Every 1000 iterations, we empty the search
tree and explore with the now-updated model Mθ and Cψ .

2.3 LEARNING CRITIC Cψ AND FINE-TUNING Mθ

After each search trial, we aim to update Cψ and Mθ distribution. To that end, training samples
from the search process are stored in two separate first-in-first-out queues: a buffer stores mutation
sequences that produced an expression with R2 ≥ 0.99 for the finetuning of Mθ, the other contains
values of nodes. For the latter, ancestors of f∗, an expression R2 ≥ 0.99, are assigned a score of
1.0. Given a value, nodes are considered for training only if their visit count is higher than a given
threshold Nmin

visits , in order to focus training on sufficiently reliable estimates.

We launch MCTS simultaneously on multiple datasets to allow potentially-beneficial transfer learning
between datasets. To avoid catastrophic forgetting that could result from sub-optimal mutations by
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the policy model, we also continue training on pre-training examples from synthetic datasets, in the
spirit of AlphaStar (Vinyals et al., 2019) or HTPS (Lample et al., 2022).

3 EXPERIMENTS

We evaluate our method DGSR-MCTS on the regression datasets of SRBench benchmark (La Cava
et al., 2021), in particular the “black-box” datasets (no ground-truth expression is given) and the

“Feynman” datasets (conversely, the underlying physics’ equation is given). As Mθ is trained on
datasets with up to 10 features, its use on higher-dimensional datasets requires feature selection.
Following Kamienny et al. (2022), we consider only datasets with at most 10 features so that our
results are independent of the quality of a feature selection algorithm. This leads to 57 black-box
datasets and 119 Feynman datasets. Each dataset is split into 75% training data and 25% test data
using sampling with a random seed (we use 3 seeds per dataset, giving a total of 528 datasets). We
consider all baselines provided as part of SRBench, which includes GP algorithms, e.g GP-GOMEA
(Virgolin et al., 2021), Operon (Burlacu et al., 2020), ITEA (de Franca & Aldeia, 2020), DGSR
algorithms, DSR (Petersen et al., 2019) and E2E (Kamienny et al., 2022) as well as classic machine
learning regression models, e.g., multi-layer perceptron (Haykin, 1994) or XGBoost (Chen &
Guestrin, 2016).

We run DGSR-MCTS with a budget of 500, 000 evaluations and a maximum time limit of 24 hours.
SRBench imposes to use at most 500, 000 evaluations per hyper-parameter configuration, and
allows for six configurations, yet we provide a single configuration. We alternate search trials with
and without constants fine-tuning.

Figure 2: Performance on test splits of SRBench, respectively the median R2 over black box
datasets and the proportion of Feynman datasets where the R2 is larger than 0.99. To nicely visualize
the trade-off between accuracy and expression size, we use a linear scale for expression size values
up to 100 then a logarithm scale. Note that AI-Feynman (Udrescu & Tegmark, 2020) was removed
from the black-box plot for readability (scores R2 = −0.6 and expression size 744).

The performance of all SR algorithms is illustrated in Figure 2 along two metrics, accuracy on the
test data (as measured by R2) and expression size computed by counting all operators, variables
and constants in an expression, after simplification by SymPy (Meurer et al., 2017). Results are
aggregated by taking the average over seeds for each dataset, then the median for black-box datasets
and mean for Feynman as done by La Cava et al. (2021). We visualize the trade-off between accuracy
and simplicity of expressions obtained by the different algorithms and compute front ranks by Pareto-
dominance as defined in Appendix D; the lower and righter the better. DGSR-MCTS is placed on the
rank 0-front on both black-box and Feynman datasets. GP-GOMEA and DGSR-MCTS seem to be
the best approaches for achieving simple-yet-accurate models, and interestingly switch place in their
trade-off between the two metrics on the black-box and Feynman datasets.

4 CONCLUSION

In this work, we introduced a competitive SR algorithm that addresses the limits of DGSR by
incorporating search as a tool to further improve performance. We showed DGSR-MCTS performs
on par with the state-of-the-art SR algorithm GP-GOMEA in terms of accuracy-complexity trade-off.
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Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and François Charton. End-to-
end symbolic regression with transformers. arXiv preprint arXiv:2204.10532, 2022.

William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabricio Olivetti de Franca, Marco Virgolin,
Ying Jin, Michael Kommenda, and Jason H Moore. Contemporary symbolic regression methods
and their relative performance. arXiv preprint arXiv:2107.14351, 2021.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. arXiv preprint
arXiv:1912.01412, 2019.

Guillaume Lample, Marie-Anne Lachaux, Thibaut Lavril, Xavier Martinet, Amaury Hayat, Gabriel
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A DATA GENERATION

To generate a large synthetic dataset with examples (D, f∗), we first sample N observations/features
X ∈ RN×D where D is uniformly sampled between 1 and 10 with a mixture of Gaussians as in
Kamienny et al. (2022), then consider sampling: a) an empty unary-binary tree from Lample &
Charton (2019) generator with between 5 and 25 internal nodes, b) assign a random operator on
nodes and either a variable {xd}d≤D or float constant drawn from a normal distribution on leaves.
We then simplify the ground-truth expression with SymPy.

The only difference with Kamienny et al. (2022) lies in the fact that the generated expressions are
much smaller by not enforcing all variables to appear sampled expressions, therefore letting the model
learn the ability to do feature selection, as well as to having much less constants (they apply linear
transformations with probability 0.5 on all nodes/leaves), therefore providing more interpretable
expressions (model size is divided by 2).

B DATA REPRESENTATION

As done in most Kamienny et al. (2022), floats are represented in base 10 foating-point notation,
rounded to four significant digits, and encoded as sequences of 3 tokens: their sign, mantissa (between
0 and 9999), and exponent (from E-100 to E100). Expressions are represented by their Polish
notations, i.e. the breadth-first search walk, with numerical constants are represented as explained
above. A dataset is represented by the concatenation of all tokenized (xi, yi) pairs where vectors
representation is just the flattenized tokens of each dimension value. The combination of both the
expression and dataset yields the representation of states by concatenating both representations and
using special separators between the expression f and dataset D. Actions are represented by the
concatenation (with special separators) of i) the node index (integer in base 10) on which to apply the
mutation, ii) the operator token, iii) the tokenized expression B if the operator is binary.

C LIST OF OPERATORS

Table 1: Set of operators that can be applied on a sub-expression A of a function, with optional
argument B as a new sub-expression to include in the tree structure. 0 refers to the root node of the
function.

Unary A −→ cos(A), A −→ sin(A), A −→ tan(A)
A −→ exp(A), A −→ log(A)

A −→ A0.5, A −→ A−1, A −→ A2, 0 −→ B
Binary A −→ A+B,A −→ A−B

A −→ A ∗B,A −→ A/B
A −→ B +A,A −→ B −A
A −→ B ∗A,A −→ B/A

D FRONT RANK

An algorithm Pareto-dominates another if it is not worse in all metrics and it is strictly better in at
least one of them. The definition of ranks is then recursive: an algorithm is at rank 0 if there exists no
algorithm that Pareto-dominates it; for successive ranks, an algorithm is at rank i if, when excluding
the algorithms up to rank i− 1, there exist no algorithm that Pareto-dominates it.

E EXCEPTIONS DETECTED ABLATIONS.

Earlier DGSR work has showed that Transformer models Vaswani et al. (2017) were able to learn
almost perfect semantics of symbolic expressions, resulting in 99% of valid expressions in Kamienny
et al. (2022). In this work, we noticed that our policy model was also able to manipulate the expression
structure quite well as around 90% of sampled mutations resulted in valid expressions. Similarly we
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noticed that malformed mutations, e.g., invalid index on which expression node to apply an operation,
argument B that cannot be parsed or or absent B when operator is binary, represent less than 1% of
errors.

As mentioned in Section 2, we make certain choices to restrict what kind of expressions can be
generated (see Section 2.1). 9% of expressions are discarded because these constraints are violated.

F CONSTANT OPTIMIZATION

As done in Kamienny et al. (2022), constants predicted by the model can be given as a initial values
to an external optimization algorithm. In practice, we use Broyden–Fletcher–Goldfarb–Shanno
algorithm (BFGS) with batch size 256 and a timeout of 1 second.

G MODEL DETAILS

Since the number of tokens transformers can use as context is limited by memory considerations and
possible learnable long-range dependencies, we restrict to 100 the number of input data points used
as input to M , the subset being sampled at each expansion. We also train our model on datasets with
at most 10 variables, as in Kamienny et al. (2022).

H SEARCH HYPER-PARAMETERS

In this work, we employ a distributed learning architecture, similar to that proposed in Lample et al.
(2022). Since the optimal hyper-parameters of search are not necessarily the same for all datasets, the
controller samples these hyper-parameters from pre-defined ranges for each different search trial:

The proposed model depends on many of hyper-parameters, specifically those pertaining to the
decoding of the mutation model and the search process. Determining the optimal values for these
hyper-parameters poses a significant challenge in practice for several reasons. Firstly, the model is in
a state of continual evolution, and thus the optimal hyper-parameter values may also change over
time. For instance, if the model exhibits an excessive level of confidence in its predictions, it may
be necessary to increase the decoding temperature to promote diversity in mutations. Secondly, the
optimal values of the hyper-parameters may be specific to the dataset under consideration. Finally,
the sheer number of hyper-parameters to be tuned, coupled with the high computational cost of each
experiment, renders the task of determining optimal values infeasible. To circumvent these issues,
rather than fixing the hyper-parameters to a specific value, they are sampled from predefined ranges
at the beginning of each search trial. The specific decoding parameters and the distribution utilized
are as follows:

• number of samples K per expansion. Distribution: uniform on range [8,16]
• Temperature used for decoding. Distribution: uniform on range [0.5, 1.0]
• Length penalty: length penalty used for decoding. Distribution: uniform on range [0, 1.2].
• Depth penalty: an exponential value decay during the backup-phase, decaying with depth to

favor breadth or depth. Distribution: uniform on discrete values [0.8, 0.9, 0.95, 1].
• Exploration: the exploration constant puct. 1
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