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ABSTRACT

Slot attention has shown remarkable object-centric representation learning perfor-
mance in computer vision tasks without requiring any supervision. Despite its
object-centric binding ability brought by compositional modelling, as a determin-
istic module, slot attention lacks the ability to generate novel scenes. In this paper,
we propose the Slot-VAE, a generative model that integrates slot attention with the
hierarchical VAE framework for object-centric structured image generation. From
each image, the model simultaneously infers a global scene representation to cap-
ture high-level scene structure and object-centric slot representations to embed
individual object components. During generation, slot representations are gen-
erated from global scene representation to ensure coherent scene structure. Our
experiments demonstrate that Slot-VAE achieves better sample quality and scene
structure accuracy compared to slot representation-based baselines.

1 INTRODUCTION

Human intelligence is capable of visually segmenting objects out of natural scenes, implicitly learn-
ing abstract object concepts, and creatively imagining novel scenes (Yuille & Kersten, 2006) (Fran-
kland & Greene, 2020). Equipping machines with such capabilities has been a desiderata for a long
time (Johnson-Laird, 1983) (Schölkopf et al., 2021) (Mambelli et al., 2022). Recent work GNM
(Jiang & Ahn, 2020) shows excellent joint object-centric representation learning and image gener-
ation performance. Although the hierarchical latent model brings GNM impressive scene structure
modeling ability, the bounding box representations in GNM struggle to segment objects with ex-
tensively varied scales and are also not flexible enough to model image components of complicated
morphology. In contrast, approaches GENESIS (Engelcke et al., 2019) and GENESIS-V2 (Engel-
cke et al., 2021) adopt more flexible slot representations to model object components. However,
the autoregressive prior therein is still unable to capture complex scene structures and the gener-
ated samples are very blurry. There is a lack of an object-centric generative model that is able to
simultaneously model complex object components and generate structured scenes.

In this work, we propose an object-centric generative model termed Slot-VAE that integrates slot
attention with the hierarchical VAE framework for joint slot representation inference and
structured image generation. Although slot attention (Locatello et al., 2020) has shown very
impressive unsupervised segmentation performance, it is unable to generate novel scenes as a de-
terministic module. If we naı̈vely combine slot attention with vanilla VAE for multi-object image
generation, the generated images would be unreasonable because slots are assumed to be indepen-
dent and the scene structure (e.g., object relationships) is totally ignored. To overcome this issue,
we adopt a two-layer hierarchical VAE model, which provides both global scene representations
that capture the scene structure and object-centric slot representations that characterize in-
dividual objects. Slot representations are generated from global scene representations during the
generation stage to ensure coherent scene structure. During training, besides learning from global
scene representations, slot representations are additionally regularized by an independent prior to
encourage object-centric disentanglement. As a byproduct beyond the generation ability, the VAE
framework and independent prior also empower the slot attention baseline with object attribute-
level disentanglement ability. Evaluating on several multi-object datasets, we show that Slot-VAE
outperforms baselines in terms of sample quality and scene structure accuracy.

The detailed Introduction and Related Work Section can be found in the Appendix A and B.
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Figure 1: Slot-VAE overview. The image x is fed into a CNN module. The obtained image features
go through two paths in parallel. On the first path, the obtained image features are input into a slot
attention module to learn object-centric slot representations s′1:K . From s′1:K , latent vectors zs

′

1:K are
inferred. On the second path, the obtained image features are encoded into a global latent vector zg .
From zg , a feature map is built and fed into a slot attention module to generate slot representations
s1:K . From s1:K , latent vectors zs1:K are obtained. Next, a decoder decodes individual object latent
vectors zs1:K into object masks π1:K and object components x1:K . By combining x1:K with π1:K ,
the input x is reconstructed. The two paths share the same slot attention module and weights, and it
requires zs

′

k and zsk to be as close as possible measured with KL divergence.

2 THE PROPOSED MODEL: SLOT-VAE

2.1 GENERATION

For an image x ∈ [0, 1]H×W×C , we postulate a two-layer hierarchical latent model for the potential
image generation process. Specifically, the first-layer latent vector zg ∈ RL×1 captures the global
structure in the image, for the purpose of modelling relationships among objects. Generated from
zg , the second-layer latent vectors {zsk ∈ RD×1}Kk=1 represent each individual object in the image,
with the goal of incorporating object-centric slot representations. Finally, with zs1:K , an image x can
be rendered with a decoder. Mathematically, the complete generative model can be written as:

pθ(x) =

∫∫
pθ(x | zs1:K)pθ(z

s
1:K | zg)pθ(zg)dzs1:Kdzg. (1)

For the prior of zg , we can choose a powerful StructDRAW prior Jiang & Ahn (2020) or a simple
normal distribution depending on image complexity. To generate zs1:K , we first decode a feature map
f ∈ RH×W×D from zg and then feed f to a slot attention module Locatello et al. (2020) to obtain
slot representations {sk ∈ RD×1}Kk=1. Since slot attention is a deterministic module, an additional
MLP is needed to map deterministic s1:K to probabilistic latent vectors zs1:K . Assuming zs1:K are
Gaussian and conditionally independent given zg , we have pθ(z

s
1:K | zg) =

∏K
k=1 pθ(z

s
k | zg). To

render an image x from zs1:K , K sub-images {xk ∈ [0, 1]H×W×C}Kk=1 are first rendered associated
with masks π1:K ∈ [0, 1]H×W . Combining x1:K with π1:K , the pixel-wise likelihood is written as:

pθ(xi,j | zs1:K) = N
(( K∑

k=1

πi,j,k(z
s
1:K)µi,j,k(z

s
k)
)
, σ2

x

)
, (2)

where (i, j) is the pixel coordinate, σx is the standard deviation with a fixed value, and πi,j,k(·) and
µi,j,k(·) are nonlinear functions mapping from latent vectors to masks πk and mean values of xk at
pixel (i, j). Since πi,j,k serves as mixing probability, it requires

∑K
k=1 πi,j,k = 1,∀(i, j).

2.2 INFERENCE

Considering that the true posterior is intractable, we approximate the posterior with:
pθ(z

g, zs1:K | x) ≈ qϕ(z
g | x)qϕ(zs1:K | x), (3)

where qϕ(z
g | x) is modelled by Gaussian distribution or an auto-regressive model depending on

the used prior Jiang & Ahn (2020). As for qϕ(z
s
1:K | x), we assume conditional independence

qϕ(z
s
1:K | x) =

∏K
k=1 qϕ(z

s
k | x), which allows the inference of individual zsk to be performed in

parallel, avoiding sequential inference like in GENESIS. The inference of zs1:K is achieved with slot
attention followed by an MLP (i.e., the first path in Fig. 1), which is detailed in the Appendix C.
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2.3 TRAINING

The ELBO L(x; θ, ϕ) = Eqϕ(zs
1:K |x)

[
logpθ(x | zs1:K)

]
− DKL

[
qϕ(z

s
1:K | x) || pθ(zs1:K | zg)

]
−

DKL
[
qϕ(z

g | x) || pθ(zg)
]

is maximized to train the model, where DKL(q || p) is Kullback-Leibler
(KL) divergence. Observing the second term on the RHS of ELBO, we can identify a key challenge
for the calculation of this KL term: since the slots output by slot attention come with no fixed order,
how can we determine the correspondence between zs1:K inferred from input x and zs1:K generated
from zg? This issue is very challenging and essential to be solved to train the hierarchical model.
We provide an effective slot order matching solution and elaborate on it in Appendix D. To
further encourage object-centric learning, we also introduce an auxiliary KL term in Appendix E.

3 EXPERIMENTS

Figure 2: Datasets and generation examples of Slot-VAE and baselines.

Dataset. Three datasets are considered: ObjectsRoom (Kabra et al., 2019), ShapeStacks (Groth
et al., 2018) and Arrow Room(Jiang & Ahn, 2020). Among them, Arrow Room is less considered by
previous works possibly because this dataset is highly structured and its probabilistic density is hard
to model. In Arrow Room, there is always an arrow shape object in the front and three objects in the
back. The arrow always points to the object with a unique shape in the back. We use Arrow Room
to evaluate the structure accuracy of novel scenes generated by each model.

Baselines. Slot-VAE is compared against four baseline models including GENESIS, GENESIS-V2,
SRI and GNM. Among them, GNM is based on the bounding box representations, while the others
are based on slot representations and assume an autoregressive prior.

Decomposition Performance. Our experimental results in Appendix F show that Slot-VAE
achieves comparable or better object decomposition performance in comparison to other slot
representation-based models GENESIS, GENESIS-V2 and SRI. In contrast, the bounding box
representation-based model GNM fails to segment ObjectsRoom and ShapeStacks images because
the bounding box representations are not flexible to model complex components. This further limits
the generation performance of GNM as described below.

Generation Performance. We show random samples generated by Slot-VAE and baseline models
in Fig. 2 (a zoom-in version of Fig. 2 is Fig. 13). For ObjectRoom, samples generated by GNM
show stripe artifacts due to its inaccurate object-centric representations captured by bounding boxes.
The sample quality of SRI is better than that of GENESIS and GENESIS-V2, but not as good as the
proposed Slot-VAE. One can more easily identify object shapes (e.g., balls and triangles) and sharp
edges with Slot-VAE compared to baselines. For ShapeStacks, GNM again shows its limitation
where it generates one individual object component with several parts. For example, a cube is
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Table 1: FID (↓) and S-Acc (↑) score. Definition of S-Acc can be found in the Appendix G.

OBJECTSROOM SHAPESTACKS ARROW ROOM

MODEL FID FID FID S-ACC

GNM 51.6∗±5 49.3∗±2 11.2±2 0.97

GENESIS 62.8∗±3 186.8∗±18 173.8±13 0.11
GENESIS-V2 52.6∗±3 112.7∗±3 111.8±5 0.20
SRI 48.4∗±4 70.4∗±3 123.3±2 0.18
SLOT-VAE (OURS) 34.9±1 50.0 ± 1 60.3±1 0.94

represented by two small parts with completely different colors. Only SRI and Slot-VAE generate
reasonable samples, while the sample quality of Slot-VAE is better in terms of sharp object edges.
For Arrow Room, the highly structured dataset, the samples generated by GENESIS, GENESIS-
V2 and SRI are very blurry and seldom show the underlying true scene structure (neither arrow
directions nor object shapes are properly learned). In contrast, GNM and Slot-VAE, both exploiting
the hierarchical model to capture scene structure, generate very coherent and high-quality samples
on Arrow Room. The reason why GNM performs better on Arrow Room than ObjectRoom and
ShapeStacks is that object shapes are simple in Arrow Room. Quantitatively, the FID and S-Acc
(Scene Accuracy) score in Table 1 further demonstrates that Slot-VAE outperforms baselines in
terms of sample quality and scene structure accuracy. Scores with ∗ in Table 1 are from (Engelcke
et al., 2020) and (Emami et al., 2022). Additional random samples can be found in Appendix H.

Figure 3: Slot-VAE latent traversal. Each row varies a dimension of zs corresponding to the ball.

Controllable Generation. We show controllable scene generation to highlight the disentanglement
performance of Slot-VAE. In Fig. 3, in each row we vary a certain dimension of the object-centric
latent vector corresponding to the ball object while keeping other object latent vectors unchanged.
As is shown, only attributes of the ball are changed, and all other objects remain unaffected. This
demonstrates object-level disentanglement of Slot-VAE. Furthermore, attribute-level disentangle-
ment also naturally appears in Slot-VAE. Specifically, when we vary dimension 1, the texture of
the ball changes, while when we vary dimension 2, the color of the ball changes. Although some
dimensions (e.g., dim 4) entangle color and position, this can be further improved with existing
attribute-level disentanglement techniques. Unlike Slot-VAE, the original deterministic slot atten-
tion comes with no obvious attribute-level disentanglement as analyzed in (Singh et al., 2022).

4 CONCLUSION

We propose Slot-VAE that integrates slot attention with a hierarchical model for joint object-centric
representation inference and scene structure modelling. The proposed model can generate novel
scenes controllable at both the object and attribute level. Experiment results show that Slot-VAE
achieves state-of-the-art sample quality and scene structure accuracy. One limitation of Slot-VAE
is that slot attention requires simple decoders like SBD to serve as a reconstruction bottleneck to
decompose objects, which, however, may not scale well to complex real-world scenes. This can be
improved by using a transformer as the decoder (Singh et al., 2021), which we leave for future work.
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A DETAILED INTRODUCTION

To equip machines with object-centric learning and imagination abilities in an unsupervised way,
most of the recent models resort to the variational autoencoder (VAE) framework (Kingma &
Welling, 2013) (Rezende et al., 2014) for the purpose of joint object-centric representation infer-
ence and image generation. Depending on how to model the compositionality of images, existing
works can be roughly categorized as spatial attention-based generative models and scene-mixture-
based generative models .

Spatial attention-based generative models infer object-centric representations by extracting a bound-
ing box for each individual object (Eslami et al., 2016) (Crawford & Pineau, 2019) (Lin et al., 2020)
(Jiang et al., 2019) (Jiang & Ahn, 2020). Such bounding boxes explicitly represent the position and
size of object components enabling interpretable object manipulation. However, this type of model
was pointed out to struggle with segmenting objects with extensively varied scales because the size
of objects is to some extent presumed (Engelcke et al., 2021) (Emami et al., 2022). Moreover, rect-
angular bounding boxes are also not flexible enough to model image components of complicated
morphology (Lin et al., 2020). In contrast, scene-mixture generative models decompose a visual
scene into image-sized components (also known as slots), and infer slot representations correspond-
ing to individual objects (Burgess et al., 2019) (Greff et al., 2019) (Engelcke et al., 2019) (Engelcke
et al., 2021). Such models segment objects with masks and are flexible enough to capture complex
object components. Recent advances in scene-mixture models have shown remarkable object seg-
mentation performance (Engelcke et al., 2019) (Engelcke et al., 2021). However, although the design
of such models advocates autoregressive priors for the purpose of generating coherent scenes, they
are still unable to model object relationships in highly structured images and the generated samples
are very blurry.

B RELATED WORKS

Object-Centric Generative Modelling. Compositional image modelling approaches (Greff et al.,
2017) (Greff et al., 2017) (Kosiorek et al., 2018) (Crawford & Pineau, 2019) (Burgess et al., 2019)
(Greff et al., 2019)(Lin et al., 2020) (Locatello et al., 2020) (Emami et al., 2021) (Singh et al.,
2021) (Kipf et al., 2021) Seitzer et al. (2022) (Singh et al., 2022) (Elsayed et al., 2022) typically
incorporates object locality as inductive bias or exploits simple decoder networks as reconstruc-
tion bottlenecks (Engelcke et al., 2020) to achieve object-centric disentanglement. However, these
approaches, unlike ours, cannot generate coherent novel scenes. GENESIS and GENESIS-V2 (En-
gelcke et al., 2019) (Engelcke et al., 2021) adopt autoregressive prior for coherent scene generation,
but unlike ours, they lack the scene-level representation learning ability and generate blurry sam-
ples without accurate scene structure. GNM (Jiang & Ahn, 2020) and similarly (Deng et al., 2021)
resorts to a hierarchical VAE model for both distributed and symbolic representations learning, but
the bounding box representations therein prevent them from modelling complicated objects or back-
grounds, unlike ours where more flexible slot representation is used. SRI Emami et al. (2022) learns
slot representations and scene-level representations, but it has to sequentially infer object represen-
tations due to the assumed autoregressive posterior. In contrast, our approach poses an independent
prior on slot representations allowing parallel inference. Besides, our approach trains the model
without the need to learn a fixed object order, but SRI requires specialized auxiliary loss for object
order alignment so as to learn the model. Lastly, SRI infers object-centric representations based on
GENESIS-V2, while the proposed Slot-VAE exploits slot attention.

GANs for Compositional Generation: GANs-based methods (Van Steenkiste et al., 2020)
(Nguyen-Phuoc et al., 2020) (Liao et al., 2020) (Niemeyer & Geiger, 2021) (Ehrhardt et al., 2020)
are able to map independent random noise vectors to individual object components on images al-
lowing object-level controllability, but these models lack an inference process and thus cannot edit
a given image unlike ours. Meanwhile, these GANs models share common unstable training issues.

C SLOT REPRESENTATION INFERENCE

We adopt slot attention (Locatello et al., 2020) followed by an MLP to infer object-centric slot
representations zs1:K , which is detailed as follows.
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CNN for feature extraction. Instead of directly working in the pixel domain, the slot representation
inference starts from passing the input image x through a CNN backbone to extract a feature map
fx = fenc(x) ∈ RH×W×D, where the CNN backbone is augmented with positional embeddings.

Slot attention for component discovery. To discover object components, the feature map fx is first
flattened into vectors finput ∈ R(H×W )×D. Then, finput is mapped to K object slots s1:K with a
slot attention module.

MLP for latent vector inference. From slots s1:K , we would like to infer the latent variables
zs1:K . We assume the approximate posterior distribution of each individual slot qϕ(zsk | x) to be
Gaussian. Hence, inferring zsk is equivalent to infer Gaussian parameters {(µs

k, σs
k)}Kk=1. To that

end, we use an MLP shared across objects mapping from slots to Gaussian means and variances:
(µs

k, σ
s
k) := MLP(sk).

D SLOT ORDER MATCHING

Problem: how can we determine the correspondence between zs1:K inferred from input x and zs1:K
generated from zg?

This issue does not appear in GNM because the spatial attention module therein provides fixed order
for each object component, which makes the calculation of KL divergence in GNM possible. SRI
proposes to learn a fixed order with a complicated specific auxiliary loss, which does not improve
scene generation performance a lot.

Solution: to address the slot order matching issue in Slot-VAE, we propose to implement qϕ(zsk | x)
and pθ(z

s
k | zg) with a shared slot attention module. That is to say, as shown in Fig. 1, the two

slot attention modules share parameters. Meanwhile, slots s
′

k and sk in Fig. 1 share initialization
values. Intuitively, such an architecture design encourages the feature map f generated from zg to be
consistent with the feature map fx encoded from input x. With similar inputs and the same random
initialization values, we can expect the output of the two slot attention modules could keep close to
each other. As a result, the order of sk (or zsk) can have a good chance to align well with that of s

′

k

(or zsk
′) in Fig. 1, facilitating the calculation of DKL

[
qϕ(z

s
1:K | x) || pθ(zs1:K | zg)

]
.

E AUXILIARY LOSS

Observe again the ELBO L(x; θ, ϕ) = Eqϕ(zs
1:K |x)

[
logpθ(x | zs1:K)

]
− DKL

[
qϕ(z

s
1:K | x) ||

pθ(z
s
1:K | zg)

]
− DKL

[
qϕ(z

g | x) || pθ(zg)
]
. Since pθ(z

s
1:K | zg) in the second term of the

ELBO is learned from the posterior distribution pθ(zg | x), it provides no explicit prior information
to guide the learning of the posterior distribution qϕ(z

s
1:K | x) during training. To guide the learning

of qϕ(zs1:K | x), the following auxiliary loss could be incorporated:

Laux = −DKL
[
qϕ(z

s
1:K | x) ||

K∏
k=1

N (0,1)
]
, (4)

where independent normal prior constrains zs1:K to be independent on each other. Such a prior
encourages each slot representation to capture only a single object leading to object-centric disen-
tanglement. Meanwhile, attribute-level disentanglement within an object can also be achieved due
to diagonal variance of the normal prior.

The overall objective function for training Slot-VAE is:

L̃ = L+ Laux. (5)
For effective training, we also introduce hyperparameters to balance the reconstruction loss and KL
terms (Rezende & Viola, 2018) (Fu et al., 2019).

F IMAGE DECOMPOSITION PERFORMANCE

Decomposition and Reconstruction Performance. We illustrate the input, reconstruction and de-
composed object components of Slot-VAE and baselines in Fig. 4 - 6. Note that GNM infers
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bounding box representations instead of slot representations. So in the figures, GNM only has two
components, one for the foreground with bounding boxes and another for the background.

As shown in Fig. 4, for the ObjectRoom dataset that comes with simple object shapes and complex
background components, slot representation-based models GENESIS, GENESIS-V2, SRI and Slot-
VAE achieve comparable decomposition and reconstruction performance, The only difference is
that some of them capture the background with one slot while others use multiple slots. In contrast,
the bounding box representation-based model GNM fails to segment objects correctly. It segments
the scene into stripes containing parts of objects and parts of the background, and a single object
is segmented into multiple bounding boxes. As a result, the reconstructed images of GNM show
rectangular artifacts. This is not surprising because with the use of grid sampling and bounding box
representations, spatial-attention generative models like GNM struggle with modelling objects that
have complicated morphology. In Fig. 5, we observe similar results for the ShapeStacks dataset,
where GNM again tries to model one single object with multiple bounding boxes. Failing to learn
correct obeject-centric representations, GNM will also suffer during the generation stage as shown
in generation results. For Arrow Room dataset that has simple object shapes but complicated scene
structures in Fig. 6, we can see all models successfully segment objects out of the scene and recon-
struct the input image. However, GENESIS-V2 and SRI learn object representations that severely
involve part of the background. Such representations will make the generated image samples very
blurry, as will be shown below. We conjecture this is because the Arrow Room dataset has too
strong object position relationships, and GENESIS-V2 and SRI (based on GENESIS-V2) do not
have enough capacity and have to choose simple ways to segment images. In summary, Slot-VAE
achieves either better or comparable segmentation and reconstruction performance in comparison to
baselines. Additional decomposition results of Slot-VAE can be found in the Appendix I.

Figure 4: Image decompostion and reconstruction performance on the ObjectsRoom dataset.

Besides, we calculate the Adjusted Rand Index (ARI) (Hubert & Arabie, 1985) score to quanti-
tatively evaluate the decomposition performance. Since the Arrow Room dataset comes with no
ground truth masks, ARI score on this dataset is not calculated. As shown in Table 2, slot-VAE
achieves comparable ARI-FG scores to baselines.

G QUANTITATIVE GENERATION PERFORMANCE

We report the Frechet Inception Distance (FID) (Heusel et al., 2017) score and scene structure ac-
curacy (S-Acc) (Jiang & Ahn, 2020) score to quantitatively evaluate sample quality and scene struc-
ture accuracy. For the FID score, the calculation involves 10000 real and generated samples. Table
1 reflects non-trivial FID score improvement (at least 27% on all datasets and can reach 45%) by
Slot-VAE against baselines, highlighting the sample quality of Slot-VAE. Note that the FID score of
baselines can be found in (Engelcke et al., 2021) (Emami et al., 2022).
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Figure 5: Image decompostion and reconstruction performance on the ShapeStacks dataset.

Figure 6: Image decompostion and reconstruction performance on the Arrow Room dataset.

For the S-Acc score, we manually classified 100 generated images per model, and calculate the ratio
of successful images that correctly reflect scene structure( i.e., the arrow object should always point
the object with a unique shape in the back as we decribed in the dataset introduction). As shown
in Table 1, Slot-VAE achieves the best S-Acc score among all slot representation-based models
(GENESIS, GENESIS-V2 and SRI).

H ADDITIONAL GENERATION RESULTS OF SLOT-VAE.

We show additional random novel scene generation examples of Slot-VAE on ObjectsRoom ShapeS-
tacks and Arrow Room in Fig.7 - Fig. 9

I ADDITIONAL DECOMPOSITION RESULTS OF SLOT-VAE.

We show additional scene decomposition examples of Slot-VAE on ObjectsRoom ShapeStacks and
Arrow Room in Fig.10 - Fig. 12

11



ICLR NeSy-GeMs workshop 2023

Table 2: ARI-FG (↑) for Slot-VAE and Baselines on ObjectsRoom and ShapeStacks. Mean and
standard deviation of ARI with three runs are presented. Scores labelled with ∗ are from original
works (Engelcke et al., 2020) and (Emami et al., 2022).

MODEL OBJECTSROOM SHAPESTACKS

GNM 0.63∗± 0.00 0.37∗± 0.07
GENESIS 0.63∗± 0.03 0.70∗± 0.05
GENESIS-V2 0.84∗± 0.01 0.81∗± 0.00
SRI 0.83∗± 0.02 0.78∗± 0.02
SLOT-VAE (OURS) 0.79 ± 0.01 0.80 ± 0.01

Figure 7: Additional generation resulst of Slot-VAE (Arrow Room dataset).

Figure 8: Additional generation resulst of Slot-VAE (ShapeStacks dataset).
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Figure 9: Additional generation resulst of Slot-VAE (Arrow Room dataset).

Figure 10: Additional decomposition resulst of Slot-VAE (ObjectsRoom dataset).

J IMPLEMENTATION DETAILS OF SLOT-VAE.

In this section, we introduce the implementation details of Slot-VAE. As shown in 1, Slot-VAE has
two parallel paths to train a two-layer hierarchical VAE model, which mainly includes the following
four modules.

CNN backbone. Before inferring the global latent representation and slot representations, the input
image is first fed into a convolutional neural network to extract relatively high-level features. This
convolutional neural network has 4 layers, each layer is with kernel size 5 and stride 1 and the
final layer has 64 channels. The obtained feature map fx still has image-sized dimensions and each
feature (channel) has a dimension of 64, i.e., the dimension is H×W×64. Soft position embeddings
are then added to the feature map to provide position information for the following modules. The
architecture of the CNN backbone model is shown in Tabel
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Figure 11: Additional decomposition resulst of Slot-VAE (ShapeStacks dataset).

Figure 12: Additional decomposition resulst of Slot-VAE (ShapeStacks dataset).

Slot Attention Module. On the first path, we adopt the slot attention module (Locatello et al., 2020)
for object-centric representation learning. We include the details for the self-containing purpose. To
prepare for slot learning, the feature map fx is first flattened into vectors finput with dimension
(H ×W ) × 64. To cluster the feature vectors into object components, the clustering center, i.e.,
slots, should be initialized first. The initialization values for object slots are from Gaussian distri-
bution respectively, i.e., s1:K ∼ N (µ, diag(σ)) ∈ RK×64, where µ and σ are learnable parameters.
These slots are then updated iteratively to compete for explaining feature vectors finput. The slot
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competition is achieved via a softmax-based attention mechanism :attni,j :=
exp(Mi,j)∑
l exp(Mi,l)

, where

M := 1√
D
k(finput) · q(s1:K)T ∈ R(H×W )×K , and k and q are learnable linear mappings RD→D

as commonly used in the attention mechanism, and
√
D is a fixed value for softmax temperature.

With the calculated attention scores attni,j , image feature vectors finput are aggregated via weighted
mean: updates := WT · v(finput) ∈ RK×D, where Wi,j := attni,j/(

∑N
l=1 attnl,j), and v is also

learnable linear mappings similar to k and q. The update of slots in each iteration is completed via a
learnable mapping parameterized by a Gated Recurrent Unit (GRU): s1:K ← GRU(s1:K , updates).
The attention computation and updating are repeated 3 iterations to output final object-centric repre-
sentations s1:K . Finally we obtain K vectors sk each of dimension 64. To infer probabilistic random
variables from sk, a MLP is used to map sk to zsk. This MLP is implemented with two layers with
the first layer followed by a RELU layer. To be emphasized, the MLP is shared across sk, to encour-
age common formats of object representations. The obtained object-centric latent vector zsk is still
with a dimension of 64.

Global Auto-Encoding Module. To learn a global latent vector, the CNN backbone outputs fx
needs to be encoded by an encoder. Depending on the chosen prior distribution of the global latent
vector, the encoder could have different structures. In the case that the global prior is Normal
distribution, the encoder can be common ones used in vanilla VAE. Specifically, the (H ×W )× 64
feature map is further flattened into one dimension, i.e., (H ×W × 64) × 1. Then a three-layer
MLP, severing as an information bottleneck, reduces the dimension of obtained feature map to zg

of dimension 32× 1. The obtained zg can be decoded with deconvolutional neural nets back to the
dimension of (H ×W ) × 64, trying to reconstruct the feature map. However, since the decoded
feature map f is not used to recover the image, rather generated object-centric latent vectors zsk, there
is no guarantee that f will be the same as fx. But with proper training, they should be close to each
other. In summary, the auto-encoding structure is the same as commonly used VAE architecture.
Another case for this global auto-encoding module is that a more powerful Strucdraw prior is used
for the global latent vector learning. In that case, zg is inferred autoregressively, the detail of such an
encoder architecture could be found in (Jiang & Ahn, 2020). Along the path of global auto-encoding,
the obtained zg of dimension 32 is then fed into a slot attention module. This slot attention module
has exactly the same architecture as the one on the first path. The two slot attention modules share
parameters.

Object Component Decoder. We choose the SBD decoder (Watters et al., 2019) as part of the
object component decoder in our model. Different from (Locatello et al., 2020) and (Engelcke
et al., 2019) where a pure SBD is used, we combine SBD decoder with deconvolutional neural
networks to balance the capacity of the decoder. Specifically, each object-centric latent vectors zsk
of dimension 64 is first broadcast to a feature with shape 8 × 8 × 64. Then this feature is decoded
with deconvolutional neural nets with each layer having stride 2 and kernel size 5, to reconstruct an
image-sized tensor with an additional channel as the mixing masks. The final output of the decoder
has the shape H ×W × 4. This decoder is shared across object-centric latent vectors zsk.

K A ZOOM-IN VERSION OF FIG. 2

This section shows Fig. 13 that is a zoom-in version of Fig. 2 for better visualization. In this zoom-
in version illustration, one can clearly see that ObjectRoom image samples generated by GNM show
severe artifacts. The walls are composed of multiple stripe parts, and the objects also have multiple
parts. This is because the GNM fails to learn object-centric representation by using bounding box
representations, as shown in Fig. 4.
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Figure 13: Datasets and generation examples of Slot-VAE and baselines.
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