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ABSTRACT

Training neural networks requires large amounts of training data, often not readily
available in symbolic reasoning domains. In this extended abstract, we consider
the scarcity of training data for temporal logics. We summarize a recently per-
formed study on the capabilities of GANs and Wasserstein GANs equipped with
Transformer encoders to generate sensible and challenging formulas in the pro-
totypical temporal logic LTL. The approach produces novel and unique formula
instances without the need for autoregression. The generated data can be used as
substitute for real training data when training a classifier, and training data can be
generated from a dataset that is too small to be trained on directly.

1 INTRODUCTION

Deep learning is increasingly applied to more untraditional domains that involve complex symbolic
reasoning. Examples include the application of deep neural network architectures to SAT Selsam
et al. (2019); Selsam & Bjørner (2019); Ozolins et al. (2021), SMT Balunovic et al. (2018), temporal
specifications in verification Hahn et al. (2021); Schmitt et al. (2021), symbolic mathematics Lample
& Charton (2020), mathematical problems with program synthesis Drori et al. (2021), or theorem
proving Loos et al. (2017); Bansal et al. (2019); Huang et al. (2019); Urban & Jakubuv (2020);
Paliwal et al. (2020).

The acquisition of training data for symbolic reasoning domains, however, is a challenge. Existing
instances, such as benchmarks in competitions Biere & Claessen (2010); Froleyks et al. (2021);
Jacobs et al. (2017), are too few to be trained on directly such that training data is laboriously
generated synthetically, for example in Selsam et al. (2019); Lample & Charton (2020); Kaliszyk
et al. (2017); Saxton et al. (2019); Schmitt et al. (2021); Evans et al. (2018).

In this extended abstract, we report on a recent study Kreber & Hahn (2021) on the automatic
generation of training data for Linear-time Temporal Logic (LTL) Pnueli (1977a) with Generative
Adversarial Networks (GANs) Goodfellow et al. (2014). LTL is a prototypical hardware specifica-
tion language of high importance for the formal methods and verification community. It forms the
basis of many industrial specification languages, such as PSL IEEE-Commission et al. (2005a) or
System Verilog Assertions (SVA). The model can be used to construct large amounts of meaningful
training data from a significantly smaller data source.

We summarize our approach to tackle the challenges of applying GANs to this setup, as they can not
immediately be applied: Specifications in LTL are symbolic and thereby discontinuous by nature
as well as of variable length. Additionally, we recap on the experiments performed to show the use
of our GAN approach for the generation of LTL formulas. We provide details on how to achieve
a stable training of a standard GAN and a Wasserstein GAN Arjovsky et al. (2017) both equipped
with Transformer encoders. We summarize the particularities of their training behavior, such as the
effects of adding different amounts of noise to the one hot embeddings. Secondly, we show for an
LTL satisfiability classifier that the generated data can be used as a substitute for real training data,
and, especially, that training data can be generated from a dataset that is too small to be trained on
directly. In particular, out of 10K training instances, a dataset consisting of 400K instances can be
generated, on which a classifier can successfully be trained on.
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Figure 1: Transformer GAN for generating LTL formulas with visualizations of the per-position
one-hot space.

2 LINEAR-TIME TEMPORAL LOGIC (LTL)

Linear-time Temporal Logic (LTL) Pnueli (1977b) is a temporal logic that forms the basis of many
practical specification languages, such as PSL IEEE-Commission et al. (2005b), STL Maler &
Nickovic (2004), or SVA Vijayaraghavan & Ramanathan (2005). LTL extends propositional logic
with temporal modalities U (until) and (next). There are several derived operators, such as

φ ≡ true U φ and φ ≡ ¬ ¬φ. φ states that φ will eventually hold in the future and
φ states that φ holds globally. Operators can be nested: φ, for example, states that φ has to

occur infinitely often. LTL specifications describe a system’s behavior and its interaction with an
environment over time. For example, given a process 0 and a process 1 and a shared ressource, the
formula (r0 → g0)∧ (r1 → g1)∧ ¬(g0 ∧ g1) describes that whenever a process requests
(r) access to the shared ressource, it will eventually be granted (g). The formula ¬(g0 ∧ g1)
ensures that grants are only given mutually exclusive.

So far, the construction of datasets for LTL formulas has been done in two ways Hahn et al. (2021):
Either by obtaining LTL formulas from a fully random generation process, which likely results
in unrealistic formulas, or by sampling conjunctions of LTL specification patterns occuring in prac-
tice Dwyer et al. (1999). We slightly refined the pattern-based method with two operations, to obtain
a healthy amount of unsatisfiable and satisfiable instances. Since the formula length correlates with
unsatisfiability, we filter for equal proportions of classes per formula length. The tree size of the for-
mulas is restricted to 50. We call the resulting dataset with around 380K instances LTLbase. We
will refer the interested reader to the full version for more details after the double-blind reviewing
ends.

3 ARCHITECTURE

The Transformer GAN architecture for generating LTL formulas is depicted in Figure 1. It consists
of two Transformer encoders as discriminator/critic and generator, respectively. The inner layers of
the encoders are largely identical to standard transformers Vaswani et al. (2017), but their input and
output processing is adjusted to the GAN setting. We use an embedding dimension of demb = 128,
nh = 8 attention heads, and a feed-forward network dimension of dFF = 1024 for both encoders
as default.

The generator’s input is a real scalar random value with uniform distribution [0, 1] for each position
in the sequence. It is mapped to demb by an affine transformation before being processed by the first
layer. The position-wise padding mask is copied from the real data during training, so the lengths of
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real and generated instances at the same position in a batch are always identical. During inference,
the lengths can either be sampled randomly or copied from an existing dataset similar to training.
Either way, the generator encoder’s padding mask is predetermined so it has to adequately populate
the unmasked positions. With V being the vocabulary, and |V | being the size of the vocabulary,
an affine transformation to dimensionality |V | and a softmax is applied after the last layer. The
generator’s output lies, thus, in the same space as one-hot encoded tokens. We use nlG = 6 layers
for our default model’s generator.

A GAN discriminator and WGAN critic are virtually identical in terms of their architecture. The
only difference is that a critic outputs a real scalar value where a discriminator is limited to the range
[0, 1], which we achieve by applying an additional logistic sigmoid in the end. To honor their differ-
ences regarding the training scheme, we use both terms when referring to exchangeable properties
and make no further distinctions between them. For input processing, their |V |-dimensional (per
position) input is mapped to demb by an affine transformation. After the last layer, the final embed-
dings are aggregated over the sequence by averaging and a linear projection to a scalar value (the
prediction logit) is applied. Our default model uses nlD = 4 layers. We achieved best results with
slightly more generator than discriminator/critic layers.

Working in the |V |-sized one-hot domain poses harsh constraints on the generator’s output. Contrary
to continuous domains where GANs are usually employed, each component of a real one-hot vector
is, by definition, either 0 or 1. If the generator were to identify this distribution and use it as crite-
rion to tell real and generated instances apart, this would pose a serious difficulty for training. We
therefore sample a |V |-sized vector of Gaussian noise N(0, σ2

real) for each position (see Figure 1).
We add it to the real samples’ one-hot encoding and re-normalize it to sum 1 before handing them
to the discriminator/critic. We use a value of σreal = 0.1 for all models to get comparable results.

4 SUMMARY OF EXPERIMENTAL RESULTS

In the following, we summarize the results of our experiments. For details on the training settings,
we will refer the interested reader to the full version after the double-blind reviewing process ends.

4.1 PRODUCING SYNTACTICALLY CORRECT FORMULAS

Generating valid LTL formulas. During training we periodically sample several generated instances
and convert them to their text representation, which involves taking the argmax at every position.
We then try to parse a prefix-encoded tree from the resulting tokens. If the parsing of a formula is
successful and no tokens remain in the sequence, we note this instance as fully correct. Both GAN
and WGAN variants increase the measure relatively continuously, but eventually reach their limit
around 30K training steps with roughly 30% for WGAN and 15% for GAN. Both generators are
able to produce a large fraction of fully correct temporal specifications, despite the length of the
instances (up to 50 tokens) and the non-autoregressive, fixed-step architecture. We list two random
examples below:

¬(h→ h)W (g ∨ h) ∧ (g ∧ g) ∧ ¬ j ∧ ¬ jW ¬b ∧ ( h ∧ j → j) ∧ j ,

(c ∨ i) ∧ ¬d ∧ ¬ cW ¬c ∧ ( d ∧ ¬((b↔ c) ←↩
↔ c)→ (c↔ d)) ∧ (b ∧ d→ d) ∧ c .

Differences in homogeneity. Comparing the correct instances generated by the WGAN and GAN
variants, we find that often, the latter would produces formulas in the likes of

i ∧ i ∧ ¬ ¬¬ i ∧ ¬¬(g ∧ g ∧ i) ,

which contains repetitions (of the -operator) or easily stringed together sequences. In fact, some
GAN runs achieved fully correct fractions above 30% (higher than WGAN), but these exclusively
produced formulas with such low internal variety. To quantify this, we calculated a sequence entropy
which treats the number of occurrences of the same token in the sequence relative to the sequences
length as probability. This metric decreases for the GAN variant during training but remains stable
for WGANs. Further experiments were thus carried out on the WGAN variant.
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Table 1: Accuracies of Transformer classifiers trained on different datasets (5-run average with
standard deviations in parentheses); all are validated on the LTLbase dataset.

trained on bs train acc @ 30K val acc @ 30K train acc @ 50K val acc @ 50K

LTLbase
1024 96.6% (0.5) 95.5% (0.4) 98.1% (0.3) 96.1% (0.3)
512 92.4% (0.7) 93.0% (0.8) 95.4% (0.5) 95.0% (0.8)

LTLbase 100K 512 95.3% (0.7) 88.3% (0.9) 98.1% (0.3) 87.8% (1.0)
LTLbase 10K 512 100% (0.1) 76.4% (1.7) 100% (0.0) 75.5% (1.5)

Generated 1024 95.4% (0.2) 93.6% (1.0) 97.1% (0.1) 93.9% (0.3)

Effects of additive noise on one-hot representation. The effect of adding different amounts of noise
to the one-hot representation of real instances strongly affected the performance of the GAN scheme,
which is unable to work without added noise. Stronger noise however improved this variant’s per-
formance. WGAN models on the other hand were not significantly influenced by added noise and
are able to be trained without it. Adding uniform noise has no benefit over Gaussian noise.

4.2 SUBSTITUTING TRAINING DATA WITH GENERATED INSTANCES

To obtain a dataset of generated instances, we first train a WGAN with default parameters but smaller
batch size of 512 on a set of 10K instances from the LTLbase dataset. After training for 15K
steps, we collect 800K generated formulas from it and call this dataset Generated-raw. This
set is processed similar to the original base dataset: Duplicates are removed and satisfiable and
unsatisfiable instances are balanced to equal amounts per formula size. We randomly keep 400K
instances and call the resulting dataset Generated.

We train several deep neural classifiers for LTL formula satisfiability on different training sets and
compare their performance in Table 1. The validation accuracy is computed on the LTLbase
dataset. Training on differently-sized subsets of LTLbase shows that a reduced number of training
samples strongly decreases performance. 10K instances lead to immense overfitting and poor accu-
racy. We were not able to train a classifier on this few formulas with significantly higher accuracy.

A classifier trained on the Generated set however achieves almost the identical validation accu-
racy on the base set as the classifier that was actually trained on it. Note that the WGAN that created
this set was trained on only 10K instances. We therefore find that the data produced by the WGAN
is highly valuable as it can serve as full substitute for the complete original training data even when
provided with much fewer examples.

Two instances of LTLbase (( ¬a)∧ ( a) and ( e)∧ ( ¬e)), i.e., only 0.02%, reappear in
the 800K large data set Generated-raw. Additionally, in Generated-raw, only 2.3K of the
800K (0.28%) generated formulas were duplicates, which displays an enormous degree of variety.

5 CONCLUSION

In this extended abstract, we summarized a recent study on the capabilities of (Wasserstein) GANs
equipped with two Transformer encoders to generate sensible training data for Linear-time Tempo-
ral Logic (LTL). Results show that both can be trained directly on the one-hot encoding space when
adding Gaussian noise. Additionally, training data can be succesfully generated and the data can
be used as a meaningful substitute when training a classifier. After the double-blind review ends,
we refer the interested reader to the full version, which contains additional tables, plots and exper-
iments. In particular, it contains an additional experiment on adding an uncertainty measure to the
generator’s output, where the models then generated instances on which a classifier was harder to
train on. A limitation of this approach is the fixed maximum length of the generated sequences. In
general, logical and mathematical reasoning with neural networks requires large amounts of sensi-
ble training data. Better datasets will lead to powerful neural heuristics and end-to-end approaches
for many symbolic application domains, such as mathematics, search, verification, synthesis and
computer-aided design. This novel, neural perspective on the generation of symbolic reasoning
instances is also of interest to generate data for tool competitions, such as SAT, SMT, code and
hardware synthesis, or model checking competitions.
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